Erasure Coding in Windows Azure Storage

Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Bradti€g Parikshit Gopalan, Jin Li, and Sergey Yekhanin
Microsoft Corporation

Abstract which is a tremendous cost saving as we will soon sur-

Windows Azure Storage (WAS) is a cloud storage sys-Pass an Exabyte of storage. There are the obvious cost
tem that provides customers the ability to store seemsSavings from purchasing less hardware to store that much
ingly limitless amounts of data for any duration of time. data, but there are significant savings from the fact that
WAS customers have access to their data from anywherdhis also reduces our data center footprint by 1/2, the
at any time, and only pay for what they use and store. TdPOwer savings from running 1/2 the hardware, along with
provide durability for that data and to keep the cost ofother savings.
storage low, WAS uses erasure coding. The trade-off for using erasure coding instead of keep-

In this paper we introduce a new set of codes for eraing 3 full copies is performance. The performance hit
sure coding called Local Reconstruction Codes (LRC)comes when dealing with) a lost or offline data frag-
LRC reduces the number of erasure coding fragment§nent andii) hot storage nodes. When an extent is
that need to be read when reconstructing data fragmengyasure-coded, it is broken up intalata fragments, and
that are offline, while still keeping the storage overhead@ set of parity fragments. In WAS, a data fragment may
low. The important benefits of LRC are that it reduces thePe lost due to a disk, node or rack failure. In addition,
bandwidth and I/Os required for repair reads over priorcloud services arperpetually in beta [2] due to frequent
codes, while still allowing a significant reduction in stor- Upgrades. A data fragment may be offline for seconds to
age overhead. We describe how LRC is used in WAS tc few minutes due to an upgrade where the storage node

provide low overhead durable storage with consistentlyProcess may be restarted or the OS for the storage node
low read latencies. may be rebooted. During this time, if there is an on-

. demand read from a client to a fragment on the storage
1 Introduction node being upgraded, WAS reads from enough fragments
Windows Azure Storage (WAS)]1] is a scalable cloud in order to dynamically reconstruct the data being asked
storage system that has been in production since Novenfer to return the data to the client. This reconstruction
ber 2008. It is used inside Microsoft for applications needs to be optimized to be as fast as possible and use
such as social networking search, serving video, musi@s little networking bandwidth and I/Os as possible, with
and game content, managing medical records, and morghe goal to have the reconstruction time consistently low
In addition, there are thousands of customers outside Mito meet customer SLAS.
crosoft using WAS, and anyone can sign up over the In- When using erasure coding, the data fragment the
ternet to use the system. WAS provides cloud storagelient’s request is asking for is stored on a specific stor-
in the form of Blobs (user files), Tables (structured stor-age node, which can greatly increase the risk of a storage
age), Queues (message delivery), and Drives (networkode becoming hot, which could affect latency. One way
mounted VHDs). These data abstractions provide thehat WAS can deal with hot storage nodes is to recog-
overall storage and work flow for applications running nize the fragments that are hot and then replicate them to
in the cloud. cooler storage nodes to balance out the load, or cache the
WAS stores all of its data into an append-only dis-data and serve it directly from DRAM or SSDs. But, the
tributed file system called the stream layer [1]. Data isread performance can suffer for the potential set of reads
appended to the end of actiegtents, which are repli- going to that storage node as it gets hot, until the data
cated three times by the underlying stream layer. Thes cached or load balanced. Therefore, one optimization
data is originally written to 3 full copies to keep the data WAS has is if it looks like the read to a data fragment is
durable. Once reaching a certain size (e.g., 1 GB), exgoing to take too long, WAS in parallel tries to perform a
tents are sealed. These sealed extents can no longer beconstruction of the data fragment (effectively treating
modified and thus make perfect candidates for erasurthe storage node with the original data fragment as if it
coding. WAS then erasure codes a sealed extent lazily iwas offline) and return to the client whichever of the two
the background, and once the extent is erasure-coded thesults is faster.
original 3 full copies of the extent are deleted. For both of the above cases the time to reconstruct a
The motivation for using erasure coding in WAS data fragment for on-demand client requests is crucial.
comes from the need to reduce the cost of storage. EraFhe problem is that the reconstruction operation is only
sure coding can reduce the cost of storage over 50%as fast as the slowest storage node to respond to reading

of the data fragments. In addition, we want to reduce
storage costs down to 1.33x of the original data using
erasure coding. This could be accomplished using the
standard approach of Reed-Solomon codes [13] where
we would have (12, 4), which is 12 data fragments and
4 code fragments. This means that to do the reconstruc-
tion we would need to read from a set of 12 fragments.Figure 1:A (6, 2, 2) LRC Example. (k = 6 data frag-
This ¢) greatly increases the chance of hitting a hot stor-ments,] = 2 local parities anat = 2 global parities.)

age node, andi) increases the network costs and I/Os

and adds latency to read that many fragments to do thgata fragments into two equal size groups and computes
reconstruction. Therefore, we want to design a new famg e |ocal parity for each group. For convenience, we
ily of codes to use for WAS that provides the following name the 6 data fragments(=1 anda) and (o, v

characteristics: andysy). Then, local parityp, is computed from the 3

1. Reduce the minimal number of fragments that needlat@ fragments in one group, =, andzs), and local
to be read from to reconstruct a data fragment. Thi?artyp, from the 3 data fragments in another groyp, (
provides the following benefits) reduces the net- Y1 andy2).
work overhead and number of I/Os to perform are- Now, let's walk through reconstructing. Instead of
constructionji) reduces the time it takes to perform readingp, (or p1) and the other 5 data fragments, (
the reconstruction since fewer fragments need to b&2: %o, y1 andys,), it is more efficient to reag, and two
read. We have found the time to perform the re-data fragmentsa(; andz2) to computer,. Itis easy to
construction is often dominated by the slowest frag-Vverify that the reconstruction a@hy single data fragment
ments (the stragglers) to be read from. requires only 3 fragments, half the number required by
2. Provide significant reduction in storage overheadthe Reed-Solomon code.
to 1.33x while maintaining higher durability thana This LRC example adds one more parity than the
system that keeps 3 replicas for the data. Reed-Solomon one, so it might appear that LRC reduces
))) reconstruction cost at the expense of higher storage over-
In this paper, we introduce Local Reconstruction Codes,gaq. In practice, however, these two examples achieve
(LRC) that provide the above properties. In addition, weeompetely different trade-off points in the design space,
describe our erasure coding implementation and imporag described in Sectidn 3.3. In addition, LRC provides
tant design decisions. more options than Reed-Solomon code, in terms of trad-
2 Local Reconstruction Codes ing off storage overhead and reconstruction cost.
In this section, we illustrate LRC and its properties We now formally define Local Reconstruction Codes.

through small examples, which are shorter codes (thu& (¥:{,7) LRC dividesk data fragments intd groups,
higher overhead) than what we use in production, in or\Vith k/1 data fragments in each group. It computes one
der to simplify the description of LRC . local parity within each group. In addition, it computes

L r global parities from all the data fragments. Lebe
2.1 Definition the total number of fragments (data + parity). Thes-

We start with a Reed-Solomon code example to eX+ + | + r. Hence, the normalized storage overhead is
plain the concept ofeconstruction cost. A (6, 3) Reed- . /k = 1 + (I + r)/k. The LRC in our example is a
Solomon code contains 6 data fragments and 3 parityg, 2, 2) LRC with storage cost of + 4/6 = 1.67x, as
fragments, where each parity is computed from all thejjjustrated in Figuré&ll.

6 data fragments. When any data fragment becomes ug— 2 Fault Tolerance

available, no matter which data and parity fragments aré -

used for reconstruction, 6 fragments are always required. Thus far, we have only defined which data fragments
We definereconstruction cost as the number of frag- are used to compute each parity in LRC. To complete
ments required to reconstruct an unavailatééa frag- the code definition, we also need to determaoeing
ment. Here, the reconstruction cost equals to 6. equations, that is, how the parities are computed from

The goal of LRC is to reduce the reconstruction cost.the data fragments. We choose the coding equations such
It achieves this by computing some of the parities fromthat LRC can achieve thidaximally Recoverable (MR)

a subset of the data fragments. Continuing the exampleroperty [14], which means it can decode any failure pat-
with 6 data fragments, LRC generates 4 (instead of 3fern which is information-theoretically decodable.
parities. The first two parities (denotedyasandp,) are Let's first explain the Maximally Recoverable prop-
global parities and are computed fro@l the data frag- erty. Given the (6, 2, 2) LRC example, it contains 4 par-
ments. But, for the other two parities, LRC divides the ity fragments and can toleratg to 4 failures. However,

Next, we determine the values afs and8’s so that
the LRC can decode all information-theoretically decod-
able 4 failures. We focus on non-trivial cases as follows:

(&) 3 Failures (b) 4 Failures 1. None of the four parities fails. The four failures
Figure 2: Decoding 3 and 4 Failures in LRC. are equally divided between groupand groupy.
Hence, we have four equations whose coefficients
LRC is not Maximum Distance Separakle[[12] and there- are given by the matrix, which result in the follow-
fore cannot toleraterbitrary 4 failures. For instance, say ing determinant:
the 4 failures are:y, x2, x3 andp,. This failure pattern

is non-decodable because there are only two parities - (1) (1) (1) (1)
the global parities - that can help to decode the 3 miss- G= ai o B. B
ing data fragments. The other local parity is useless a; a% 5

i j s t

in this example. It igmpossible to decode 3 data frag-
ments from merely 2 parity fragments, regardless of cod- ~ Det(G) = (o — a;)(Be — Bs)(cvi + oj — Bs —).
ing equations. These types of failure patterns are called

information-theoretically non-decodable. 2. Only one ofp,, and p, fails. Assumep, fails. For
Failure patterns that are possible to reconstruct are the remaining three failures, two are in groupnd
calledinformation-theoretically decodable. For instance, the third one in group. We now have three equa-

the 3-failure pattern in Figufe 2{a) and the 4-failure pat- tions with coefficients given by
tern in Figurg 2(B) are both information-theoretically de-

codable. For these two failure patterns, it is possible to Q' — Of ;_ 50
construct coding equations such that it is equivalent to o2 o 53
solving 3 unknowns using 3 linearly independent equa- A
tions in Figurd 2(3) and 4 unknowns using 4 linearly in- Det(G') = Bs(a; — ai)(Bs — aj —).

dependent equations in Figjire 2(b).) N o
Conceivably, it is not difficult to construct a set of cod- 3- BOth p, and p, fail. Inaddition, the remaining two
ing equations that can decode a specific failure pattern, ~ failures are divided between groupand groupy.

However, the real challenge is to construsirale set of We have two equations with coefficients given by
coding equations that achieves thkeximally Recover- o B
able (MR) property [14], or being able to decode all the G" = (o2 53 >

information-theoretically decodable failure patternbe-t y
exact goal of LRC. Det(G") = a;Bs(Bs —).

22.1 Constructing Coding Equations To ensure all the cases are decodable, all the matrices

It turns out that the LRC can tolerate arbitrary 3 fail- & G’ andG” should be non-singular, which leads to the
ures by choosing the following two sets of coding coeffi- f|1owing conditions:

cients ¢’s andg’s) for groupx and groupy, respectively.

We skip the proofs due to space limitation. Let ai, aj, Bs, Bt #0)
— QoZo 4 QT 4 Ao (1) ai, o # Bsy Br (10)
doo T aGTomaNTL Tan i+ a; # fs + fi (12)
eyt = O0T0 T AT AN A, fulfill th ditions | igndts
= 3 ne way to fulfill these conditions is to assignd
Gz2 = T0 + 21+ Ty @) and 3's the elements from a finite field GE{) [12],
and where every element in the field is represented by 4 bits.
«’s are chosen among the elements whose lower order 2
4.0 = Boyo + Biy1 + Bayo (4) bits are zero. Similarlyg’s are chosen among the ele-
ments whose higher order 2 bits are zero. That way, the
Qy,1 = 532!0 + 5%2!1 + 552!2 (5) 9 y

lower order 2 bits ofv's (and the sum of’s) are always
dy2 = Yo T Y1 + Y2 (6) zero, and the higher order 2 bits 85 (and the sum of
5's) are always zero. Hence, they will never be equal and
all the above conditions are satisfied.
This way of constructing coding equations requires a
Po =420+ Q.00 P1= a1 Tyt (7) very small%‘inite field and g1akes igr]np?ementationqpracti-
Pz =qz,2, Py = Qy,2- (®) cal. Itis a critical improvement over our own Pyramid

Then, the LRC coding equations are as follows:

codes [[14]. In Pyramid codes, coding equation coeffi-2.4 Summary

cients are discovered through a search algorithm, whose Now, we summarize Local Reconstruction Codes. A
complexity grows exponentially with the length of the (1 ;) LRC dividesk data fragments intblocal groups.
code. For parameters considered in Windows Azurqt encoded local parities, one for each local group, and
Storage, the search algorithm approach would have re: giopal parities. Any single data fragment failure can be
sulted in a large finite field, which makes encoding andgyecoded fromk /1 fragments within its local group.
decoding complexity high. In addition, LRC achieves Maximally Recoverable
2.2.2 Putting Things Together property. It tolerates up to + 1 arbitrary fragment fail-
To summarize, th¢6, 2, 2) LRC is capable of decod- ures. Italso tolerates failures more thanl (up tol+r),
ing arbitrary three failures. It can also decode all theprovided those are information-theoretically decodable.
information-theoretically decodable four failure patigr Finally, LRC provides low storage overhead. Among
which accounts for 86% of all the four failures. In short, all the codes that can decode single data fragment fail-
the (6,2,2) LRC achieves the Maximally Recoverable ure from#k /i fragments and tolerate+ 1 failures, LRC
property [14]. requires the minimum number of parities.

2.2.3 Checking Decodability 3 Reliability Model and Code Selection

Given a failure pattern, how can we easily check .
L . : There are many choices of parametérs! and »
whether it is information-theoretically decodable? Here S
for LRC. The question is: what parameters should we

is an efficient algorithm. For each local group, if the lo- ; . : .
o X . choose in practice? To answer this, we first need to un-
cal parity is available, while at least one data fragment - .
is erased. w the parity with one erased data fra derstand the reliability achieved by each set of param-
, WENap parity 9" eters. Since 3-replication is an accepted industry stan-
ment. The swap operation marks the data fragment a o o
ard, we use the reliability of 3-replication as a refer-

available and the parity as erased. Once we complete ;
. nce. Only those sets of parameters that achieve equal or
all the local groups, we examine the data fragments and. e L .

igher reliability than 3-replication are considered.

the global parities. If the total number of erased frag-
ments (data and parity) is no more than the number 08.1 Reliability Model
global parities, the algorithm declares the failure pat- Reliability has long been a key focus in distributed
tern information-theoretically decodable. Otherwise, itstorage systems [28. 129,]30.31]. Markov models are
is non-decodable. This algorithm can be used to verifycommonly used to capture the reliability of distributed
that the examples in Figuké 2 are indeed decodable. storage systems. The model is flexible to consider both
2.3 Optimizing Storage Cost, Reliability independent or correlated failures [10) B2, 33, 34]. We
and Performance add a simple extension to generalize the Markov model,
in order to capture unique state transitions in LRC. Those
ransitions are introduced because the failure mode de-
ends on not only the size of failure, but also which sub-
et of nodes fails. In our study, we focus on independent
failures, but the study can be readily generalized to cor-
related failures[10, 34].

Throughout the entire section, we have been focusin
on the (6, 2, 2) LRC example. It is important to note that
all the properties demonstrated by the example generaE
ize to arbitrary coding parameters.

In general, the key properties of(a,l,r) LRC are:
i) single data fragment failure can be decoded fiofh)
fragments;ii) arbitrary failures up to + 1 can be de- 3-1.1 Modeling (6, 2, 2) LRC
coded. Based on the following theorem, these properties We start with the standard Markov model to analyze
impose a lower bound on the number of parities [21]. reliability. Each state in the Markov process represents
the number of available fragments (data and parity). For
example, Figur&l3 plots the Markov model diagram for
the(6,2,2) LRC.

Theorem 1. For any (n, k) linear code (with k& data sym-
bols and n — k parity symbols) to have the property:

1. arbitrary r + 1 symbol failures can be decoded; Let A denote the failure rate of a single fragment.
2. single data symbol failure can be recovered from Then, the transition rate from all fragments healthy
[k/1] symbols, State 10 to one fragment failuréSt at e 9 is 10\.

The extension from the standard Markov model lies in
St at e 7, which can transition into two states with 6
n—k>1+r. (12) healthy fragments.St at e 6 represents a state where
there are four decodable failures. On the other hand,
Since the number of parities of LRC meets the lowerst at e 6F represents a state with four non-decodable
boundexactly, LRC achieves its properties with the min- fajlures. Letp, denote the percentage of decodable four
imal number of parities. failure cases. Then the transition rate fr@mat e 7 to

the following condition is necessary:

State 6 is TAp; and the transition t&t at e 6F is] | MTTF (years)|

TA(L = pa). 3-replication 3.5x10°
(6, 3) Reed-Solomon 6.1 x10'!
(6, 2, 2) LRC 2.6x1012

Table 1: Reliability of 3-Replication, RS and LRC.

failures, while 3-replication tolerates only two failures
it should be no surprise that the Reed-Solomon code of-
fers higher reliability than 3-replication. Similarly,eh
LRC tolerates not only three failures, but also 86% of
Inthe reverse direction, Igt denote the transition rate the four-failure cases, so it naturally achieves the highes
from one fragment failurest at e 9 back to all frag- reliability.
ments healthyst at e 10, which equals to the average
repair rate of)_:ingle-fragment failu?es. ’ 3.2 Costand Performance Trade-offs
Assume there ar#/ storage nodes in the system, each Each set of LRC parameters, (andr) yields one set
with S storage space anfl network bandwidth. When Of values of reliability, reconstruction cost and storage
single storage node fails, assume the repair load is even§verhead. For the (6, 2, 2) LRC, the reliability (MTTF in
distributed among the remainirig/ — 1) nodes. Further, years) is2.6 x 102, the reconstruction cost is 3 and the
assume repair traffic is throttled so that it only uses Storage overhead is 1.67x.
the network bandwidth on each machine. When erasure We obtain many sets of values by varying the param-
coding is applied, repairing one failure fragment requireseters. Since each fragment has to place on a different
more than one fragment, denoted as repair €osthen, fault domain, the number of fault domains in a cluster
the average repair rate of single-fragment failurgs is- limits the total number of fragments in the code. We
e(M —1)B/(SC). use 20 as the limit here, since our storage stamps (clus-
Other transition rategs throughpg can be calculated ters) have up to 20 fault domains. Using the reliability
similarly. In practice, however, the repair rates beyond(MTTF) of 3-replication as the threshold, we keep those
single failure are dominated by the time taken to detecsets of parameters that yield equal or higher reliability
failure and trigger repalif.Let T denote the detection and than 3-replication. We then plot the storage overhead
triggering time. It suffices to sek = p; = pg = 1/T. and the reconstruction cost of the remaining sets in Fig-
Any single storage node stores both data and parit)ldfe@r- Again, each individual point represents one set of
fragments from different extents. So, when it fails, bothcoding parameters. Each parameter set represents cer-
data and parity fragments need to be repaired. The repaifiin trade-offs between storage cost and reconstruction
cost can be calculated by averaging across all the fragoerformance.
ments. Different coding parameters can result in the same
For the(6, 2, 2) LRC, it takes 3 fragments to repair any storage overhead (such as 1.5x), but vastly different re-
of the 6 data fragments and the 2 local parities. Furthergonstruction cost. In practice, it only makes sense to
it takes 6 fragments to repair the 2 global parities. Henceghoose the one with the lower reconstruction cost. There-
the average repair coét = (3 x 8 + 6 x 2)/10 = 3.6. fore, we outline the lower bound of all the trade-off
Also, enumerating all four failure patterns, we obtain thepoints. The lower bound curve characterizes the funda-

Figure 3: Markov Reliability Model for the (6, 2,
2) LRC. (State represents the number of healthy frag
ments.)

decodability ratio apy = 86%. mental trade-off between storage cost and reconstruction
3.1.2 Reliability of (6, 2, 2) LRC performance for LRC.

Now, we use a set of typical parametedd (= 400, 3.3 Code Parameter Selection
S = 16TB, B = 1Gbps,e = 0.1 andT" = 30 min- Similarly, for (k,) Reed-Solomon code, we vary the

Utes) to calculate the rel|ab|l|ty of the LRC, which is parameterg andr (SO |Ong ase +7r S 20) and also ob-
also compared to 3-replication and Reed-Solomon codgain a lower bound cost and performance trade-off curve.
in Table[1. Since the Reed-Solomon code tolerates thre@e compare Reed-Solomon to LRC in Figlte 5. On the
1When multiple failures happen, most affected coding groupg onl Reed-So_I(?mon curve, we mark two Spe_Ci‘?I points, which
have a single fragment loskinlucky coding groups with two or more ~ are specific parameters chosen by existing planet-scale
fragment losses are relatively few. Therefore, not many fragsenter cloud storage systems. In particular, RS (10, 4) is used

r_nulti—failure_ repair _stages. In addition, multi—fai_lurg 2316 are priori- in HDES-RAID in FacebookK [8] and RS (6, 3) in GES Il
tized over single-failure ones. As a result, multi-failuepairs are fast R

and they take very little time, compared to detecting the fagiand in G_009|e_[91 10]. Aga_in, note that a”_the_trade'Oﬁ points
triggering the repairs. achieve higher reliability than 3-replication, so they are

N
o
-
~
]
-
~

. .
‘e ¢ 0 =@~ Reed-Solomon
Ct Trade-off Points RS(10,4) =~ Reed-Solomon _
. - —
10 /U 10 1 —o- HoVer
set g 8 o =&- Lower Bound =4— LRC
same read cost
8 « 1.5x to 1.33x

RS(6,3) same overhead
half read cost

o

Stepped Combination
\ k\ - LRC
€ Weaver [
. . LR((12,2,2) &\‘ X‘
. .
M e . -\. —\.
v .t .
2 LRC({12,4,2) e Pe

1.2 13 1.4 1.5 1.6 1.7 1.8 19 2 1.2 13 1.4 15 1.6 17 1.8 1.9 2 1.2 13 1.4 15 1.6 17 1.8 1.9 2
Storage Overhead Storage Overhead Storage Overhead

o

Reconstruction Read Cost
@
~

Reconstruction Read Cost
Y
Reconstruction Read Cost
o

~

o
=)
o

Figure 4: Overhead vs. Recon. Cost. Figure 5: LRC vs. RS Code. Figure 6: LRC vs. Modern Codes.

candidates for WAS. Compared to these modern storage codes, LRC is
The comparison shows that LRC achieves better cossuperior in terms of the trade-off between reconstruc-
and performance trade-off than Reed-Solomon across thon cost and storage overhead. The primary reason is
range of parameters. If we keep the storage overhead thtbat LRC separates parity fragments into local ones and
same, reconstruction in LRC is much more efficient thanglobal ones. In this way, local parities only involve min-
that in Reed-Solomon. On the other hand, if we keep reimum data fragments and can thus be most efficient for
construction cost the same, LRC can greatly reduce stoproviding reconstruction reads when there is a hot spot,
age overhead, compared to Reed-Solomon. In generdipr reconstructing single failures, and for reconstrugtin
we can choose a point along the cost and performanca single fragment that is offline due to upgrade. On the
trade-off curve, which can reduce storage overhead andther hand, global parities involve all the data fragments
reconstruction cost at the same time. and can thus be most useful to provide fault tolerance
Compared to (6, 3) Reed-Solomon, we could keepwhen there are multiple failures. In contrast, in Weaver
storage overhead the same (at 1.5x) and replace theodes, HoVer codes and Stepped Combination codes, all
Reed-Solomon code with a (12, 4, 2) LRC. Now, the parities carry both the duty of reconstruction and fault
reconstruction cost is reduced from 6 to 3 for single-tolerance. Therefore, they cannot achieve the same trade-
fragment failures, a reduction of 50%. This is shown byoff as LRC.
the vertical move in Figurg 5. LRC is optimized for reconstructing data fragments,
Alternatively, as shown by the horizontal move in Fig- but not parities, in order to quickly reconstruct on-
ure[3, we could keep reconstruction cost the same (adlemand based reads from clients. In terms of parity re-
6) and replace the Reed-Solomon code with a (12, 2, 2yonstruction, Weaver codes, HoVer codes and Stepped
LRC. Now, the storage overhead is reduced from 1.5x taCombination codes can be more efficient. For instance,
1.33x. For the scale of WAS, such reduction translatedet's compare Stepped Combination code to LRC at the
into significant savings. storage overhead of 1.5x, where both codes consist of

3.4 Comparison - Modern Storage Codes 12 data fragments and 6 parities. For the Stepped Com-
o . bination code, every parity can be reconstructed from 3
We apply the same reliability analysis to state-of-the-

: o fragments, while for LRC the reconstruction of global
art erasure codes designed specifically for storage sys-_ -.. ;
arities requires as many as 12 fragments. It turns out

tsetr:s, jg(g]oarlnsb\i/xi\?c/)irccood?ss[glcﬁ],va\éigr%?ggih[;?ga?jlgjat there is fundamental contention between parity re-
PP - ' onstruction and data fragment reconstruction, which we

off between reconstruction cost an_d storage Overh?aétudled in detail separately [21]. In WAS, since parity
when these codes are at least as reliable as 3-replicatiop. . o
N réconstruction happens only when a parity is lost (e.g.,
The results are plotted in Figuré 6. The storage over-,. . - 2
head of Weaver codes is 2x or higher. so onlv a sin Iedlsk, node or rack failure), it is off the critical path of
oint (storage overhead = 2x recognstrijction c><;st - 3?isservmg client reads. Therefore, itis desirable to trade th
P 1orage | ' efficiency of parity reconstruction in order to improve the
shown in the Figure. We observe that the trade-off curve : :
L . . performance of data fragment reconstruction, as is done

of Stepped Combination codes is strictly below that of. LRC

Reed-Solomon. Therefore, both codes can achieve more)
efficient reconstruction than Reed-Solomon when stor3-5 Correlated Failures

age overhead is fixed. Similarly, they require less storage The Markov reliability model described in Section]3.1
overhead when reconstruction cost is fixed. HoVer codesissumes failures are independent. In practice, correlated
offer many trade-off points better than Reed-Solomon. failures do happemn [10, 34]. One common correlated fail-

ure source is all of the servers under the same fault do- paxos Stream Layer

main. WAS avoids these correlated failures by always / \
SM

placing fragments belonging to the same coding group
in different fault domains.

|
1
1
1
[}
\

To account for additional correlated failures, the | 77 i
Markov reliability model can be readily extended by A Efas“;ecfdel// BMAfdeitth
adding transition arcs between non-adjacent states [10]. an exten /// cladeta
. . . | 4
4 Erasure Coding Implementation in WAS EN E/NE EN EN
The WAS architecture has three layers within a storage — %] I
stamp (cluster) - front-end layer, partitioned object laye] .] .
and stream replication layer|[1]. /jz/ Qz§j$
Erasure coding in WAS is implemented in the stream EN EN | | EN EN
layer as a complementary technique to full data repli- — — —| | ——
cation. It is also possible to implement erasure cod- - - - -

ing across multiple storage stamps on several data cen-
ters [38]. Our choice to implement erasure coding i”SideFigure 7: Erasure Coding of an Extent (not all target

the stream layer is based on the fact that it fits the overgng gre shown).

all WAS architecture where the stream layer is responsi-

ble for keeping the data durable within a stamp and theon the erasure coding parameters, for example 16 frag-
partition layer is responsible for geo-replicating theadat ments for LRC (12, 2, 2).

between data centers (seé [1] for more details). The SM designates one of the ENs in the extent's

4.1 Stream Layer Architecture replica set as the coordinator of erasure coding (see Fig-
The main components of the stream layer are théirelf) and sends it the metadata for the replica set. From

Stream Managers (SM), which is a Paxos [37] replicatedhen on, the coordinator EN has the responsibility of

server, and Extent Nodes (EN) (see Figdre 7). completing the erasure coding. The coordinator EN has,

Streams used by the partition layer are saved as a list dpc@lly on its node, the full extent that is to be erasure-
extents in the stream layer. Each extent consists of a ligg®ded- The EN prepares the extent for erasure coding by

of append blocks. Each block is CRC'd and this block isdeciding where the boundaries for all of the fragments

the level of granularity the partitioned object layer useswiII be in the extent. It chooses to break the extent into

for appending data to the stream, as well as reading dafi@gments at append block boundaries and not at arbi-
(the whole block is read to get any bytes out of the block frary offsets. This ensures that reading a block will not

since the CRC is checked on every read). Each extent /0SS multiple fragments. _
replicated on multiple (usually three) ENs. Each write After the coordinator EN decides what the fragment
operation is committed to all nodes in a replica set in goffsets are, it communicates those to the target ENs that

daisy chain, before an acknowledgment is sent back t¥/lll hold each of the data and parity fragments. Then
the client. Write operations for a stream keep appendinéhe coordinator EN starts the encoding process and keeps

to an extent until the extent reaches its maximum size (irp€"ding the encoded fragments to their designated ENs.
the range of 1GB-3GB) or until there is a failure in the The coordinator EN, as well as each target EN, keeps
replica set. In either case, a new extent on a new replicfack of the progress made and persists that information
set is created and the previous extent is sealed. Whefito €ach new fragment. If a failure occurs at any mo-
an extent becomes sealed, its data is immutable, and ffent in this process, the rest of the work can be picked
becomes a candidate for erasure coding. up by another EN based on the progress information per-
.. sisted in each fragment. After an entire extent is coded,
4.2 Erasure Coding in the Stream Layer the coordinator EN notifies the SM, which updates the
The erasure coding process is completely asynmetadata of the extent with fragment boundaries and
chronous and off the critical path of client writes. The completion flags. Finally, the SM schedules full replicas
SM periodically scans all sealed extents and schedules @f the extent for deletion as they are no longer needed.
subset of them for erasure coding based on stream poli- The fragments of an extent can be read directly by a
cies and system load. We configure the system to autcelient (i.e., the partition or front-end layer in WAS) by
matically erasure code extents storing Blob data, but alseontacting the EN that has the fragment. However, if
have the option to erasure code Table extents too. that target EN is not available or is a hot spot, the client
As a first step of erasure coding of an extent, the SMcan contact any of the ENs that has any of the fragments
creates fragments on a set of ENs whose number dependéthe extent, and perform a reconstruction read (see Fig-

paxos Stream Layer a different rack. If each fragment were similarly placed

B.Stream | j on a different upgrade domain, then at least 16 upgrade

Parion «ffe—‘f—d_—afaj;i\ YR domains are required. In practice, however, too many

Client | T open stream - g upgrade domains can slow down upgrades and it is de-
1 sirable to keep the number of upgrade domains low. In

WAS, we currently use 10 upgrade domains. This means

5 . N N N that we have at most 10% of the storage stamps (clus-
£3 _ . e ter) resources offline at any point in time during a rolling

e il P / — — upgrade.

= ‘/}”/1 — Given our desire to have fewer upgrade domains than

EN :/E,N/—;s;/w’/_} EN fragments, we need an approach for placing the frag-

Data ﬁ /ﬁ @ ﬁ ments across the upgrade domains to still allow LRC to

perform its fast reconstruction for the fragments that are
offline. To that end, we exploit the local group property
of LRC and group fragments belonging to different lo-
cal groups into same upgrade domains. In particular, we
place the two local groupsandy so that their data frag-
ure[8). That EN would read the other needed fragmentgnentsy; andy; are in the same upgrade domaifi.e.,
from other ENs, then reconstruct that fragment, CaCh%CO and Yo are p|aced in the same upgrade domain’ but
the reconstructed fragment locally in case there are othedifferent fault domains). Similarly, we place the local
reads to |t, and return the results to the client. LRC re'paritiespac andpy in one upgrade domain as well. The

duces the cost of this reconstruction operation considefyo global parities are placed in two separate upgrade
ably by reducing the number of source ENs that need t®jomains from all other fragments.

be accessed. Take for example LRC (12, 2, 2). In total, we use 9
If the EN or the disk drive that hosts the extent frag- ypgrade domains for placing the fragments for an extent.
ment is unavailable for an extended period of time, theThere are two local groups, each with 6 data fragments,
SM initiates the reconstruction of the fragment on a dif-p|u5 2 local parities (1 per group), and then 2 global pari-
ferent EN. This operation is almost identical to the recon-jes. When using 9 upgrade domains, we put the 2 global
struction steps shown in Figure 8 except for the fact thaparities into two upgrade domains with no other frag-
the operation is initiated by the SM instead of the client, ments in them, we then put the 2 local parities into the
and the data is written to disk rather than being sent backame upgrade domain with no other fragments in them,

Figure 8: Reconstruction for On-Demand Read(not
all target ENs are shown).

to the client. and then the remaining 6 upgrade domains hold the 12
4.3 Using Local Reconstruction Codes in datafragments for the 2 local groups.
Windows Azure Storage During an upgrade period, when one upgrade domain

)) _ istaken offline, every single data fragment can still be ac-
When LRC is used as an erasure coding algorithmeegsed efficiently - either reading directly from the frag-

each extent is divided intb equal-sizedata fragments. ment or reconstructing from other fragments within its
Then! local andr globalparity fragments are created. |q¢q) group.

The placement of the fragments takes into account two o .
factors: i) load, which favors less occupied and less4-4 Designing for Erasure Coding
loaded extent nodesj) reliability, which avoids plac- Scheduling of Various I/O Types. The stream layer
ing two fragments (belonging to the same erasure codhandles a large mix of I/O types at a given time: on-
ing group) into the same correlated domain. There arglemand open/close, read, and append operations from
two primary correlated domains: fault domain and up-clients, create, delete, replicate, reconstruct, scrat, a
grade domain. A fault domain, such as rack, categorizemove operations generated by the system itself, and
a group of nodes which can fail together due to com-more. Letting all these 1/Os happen at their own pace can
mon hardware failure. An upgrade domain categorizegjuickly render the system unusable. To make the system
a group of nodes which are taken offline and upgradedair and responsive, operations are subject to throttling
at the same time during each upgrade cycle. Upgradand scheduling at all levels of the storage system. Every
domains are typically orthogonal to fault domains. EN keeps track of its load at the network ports and on

Let's now use LRC (12, 2, 2) as an example and il-individual disks to decide to accept, reject, or delay /O
lustrate an actual fragment placement in WAS. A WASrequests. Similarly, the SM keeps track of data replica-
stamp consists of 20 racks. For maximum reliability, tion load on individual ENs and the system as a whole
each of the total 16 fragments for an extent is placed irto make decisions on when to initiate replication, erasure

coding, deletion, and various other system maintenancéagment and reconstruct it using the other global parity
operations. Because both erasure coding and decodirgnd the remaining data fragments) randomly choose
requires accessing multiple ENs, efficiently schedulingtwo data fragments and reconstruct themn;randomly
and throttling these operations is crucial to have fair perchoose three data fragments and reconstruct them; and
formance for other 1/O types. In addition, it is also im- vi) randomly choose four data fragments (at least one in
portant to make sure erasure coding is keeping up witleach group) and reconstruct them. After each decoding
the incoming data rate from customers as well as intercombination above, the CRC of the decoded fragment is
nal system functions such as garbage collection. We havehecked against the CRC of the data fragment for suc-
a Petabyte of new data being stored to WAS every coueessful reconstruction of data.
ple of days, and the built out capacity expects a certain Finally, the coordinator EN performs a CRC of all of
fraction of this data to be erasure-coded. Therefore, thénhe final data fragments and checks that CRC against the
erasure coding needs to be scheduled such that it keepgiginal CRC of the full extent that needed to be erasure-
up with the incoming rate of data, even when there arecoded. This last step ensures we have not used data that
critical re-replications that also need to be scheduled duenight become corrupted in memory during coding op-
to a lost disk, node or rack. erations. If all these checks pass, the resulting coded
Reconstruction Read-ahead and CachingRecon- fragments are persisted on storage disks. If any failure
struction of unavailable fragments is done in unit sizesis detected during this process, the erasure coding oper-
greater than the individual append blocks (up to 5MB) toation is aborted, leaving the full extent copies intact, and
reduce the number of disk and network I/Os. This readthe SM schedules erasure coding again on another EN
ahead data is cached in memory (up to 256MB) of thdater.
EN that has done the reconstruction. Further sequential Arithmetic for Erasure Coding. Directly using Ga-

reads are satisfied directly from memory. lois Field arithmetic for the erasure coding implementa-

Consistency of Coded Data. Data corruption can tion is expensive because of all the emulation operations
happen throughout the storage stack for numerous reaequired on top of the integer arithmetic. Therefore, it is
sons [36]. In a large-scale distributed storage systemgeneral practice to optimize Galois Field arithmetic op-
data can become corrupted while at rest, while being readrations by pre-computing and using addition and mul-
or written in memory, and while passing through severatltiplication tables, which improves coding speed. In ad-
data paths. Therefore, it is essential to check the condition, Reed-Solomon codes can be further optimized by
sistency of the data in every step of the storage systera transformation that enables the use of XOR operations
operations in addition to periodically scrubbing the dataexclusively [22]. To get the best possible performance
at rest. for this transformation, the XOR operations can be or-

Checksum and parity are the two primary mechanismslered specifically based on the patterns in the coding
to protect against data corruptidn [35]. In WAS, we em-and decoding matrices [23]. This scheduling removes
ploy various CRC (Cyclic Redundancy Check) fields tomost of the redundant operations and eliminates check-
detect data and metadata corruptions. For example, eadhg the coding matrix again and again during the actual
append block contains a header with CRC of the datacoding pass. WAS uses all of the above optimizations
block, which is checked when the data is written and ev4o streamline in-memory encode and decode operations.
ery time data is read. When a particular data read oSince modern CPUs perform XOR operations extremely
reconstruction operation fails due to CRC checks, thdast, in-memory encode and decode can be performed at
operation is retried using other combinations of erasurethe speed which the input and output buffers can be ac-
coded fragments. Also, the fragment with the corruptedcessed.
block is scheduled for regeneration on the next availablq5
EN. Performance

After each erasure encoding operation, several decod- WAS provides cloud storage in the form of Blobs (user
ing combinations are tried from memory on the coordi-files), Tables (structured storage), Queues (message de-
nator EN to check for successful restorations. This stepivery), and Drives (network mounted VHDs). Applica-
is to ensure that the erasure coding algorithm itself doetions have different workloads, which access each type
not introduce data inconsistency. For LRC (12, 2, 2),of storage differently. The size of I/O can be polarized:
we perform the following decoding validations before small I/O is typically in the 4KB to 64KB range, predom-
allowing the EC to completei) randomly choose one inantly assessing Tables and Queues; large 1/Os (mostly
data fragment in each local group and reconstruct it us4MB), primarily accessing Blobs; and Drives can see a
ing its local group;ii) randomly choose one data frag- mixture of both. In this section, we characterize the per-
ment and reconstruct it using one global parity and thformance of LRC and compare it to Reed-Solomon for
remaining data fragment&;) randomly choose one data small and large 1/Os, respectively.

350 M Direct ® RS (read k) W RS (read k+1)

® Direct 305 1400 M RS (read k+2) ™ RS (read k+3) m LRC B

300 H
M RS (read k) 1200 1158 1173 1206

]
250 RS (read k+1)

B RS (read k+2) 1000 393 900

N
o
S

"l ™ RS(read k+3)

o
o
=)

| = tre

-
u
=]

Latency (ms)
D
8

Latency (ms)

N
o
=]

N
o
o

o
I

Light Heavy Light Heavy

Cluster Load Cluster Load
(a) Latency (a) Latency
15 15
) =
.g 10 = glo i
s T
£ B
5 BE
£ 5 895+
o —
=
0 0 -
Direct ~ RS-(k) RS-(k+1) RS-(k+2) RS-(k+3) LRC Direct ~ RS-(k) RS-(k+1) RS-(k+2) RS-(k+3) LRC
(b) Reconstruction I/O (b) Reconstruction Bandwidth
Figure 9: Small (4KB) I/0 Reconstruction - (12, 4) Figure 10:Large (4MB) I/O Reconstruction - (12, 4)
Reed-Solomon vs. (12, 2, 2) LRC. Reed-Solomon vs. (12, 2, 2) LRC.

We compare LRC (12, 2, 2) to Reed-Solomon (12,tency, we exploit a simple technique - selecting more (de-
4), both of which yield storage cost at 1.33x. Note thatnoted ask’) fragments and decoding from the fiksar-
(12, 3) Reed-Solomon isot an option, because its reli- rivals (represented &S (read k') or RS+(k')
ability is lower than 3-replication. Results are obtainedin Figure[®). This technique appears very effective in
on our production cluster with significant load variation weeding out slow fragments and reduces the latency dra-
over time. We separate the results based on the clustenatically.
load and contrast the gain of LRC when the cluster is In comparison, reconstruction with LRC is fast. It
lightly loaded to when it is heavily loaded. The produc- requires only 6 fragments to be read and achieves the
tion cluster, where these results were gathered, has onatency of 166ms, which is comparable to 151ms with
1Gbps NIC for each storage node. Reed-Solomon reading 13 fragments. Note that ex-
5.1 Small I/Os tremely aggrt_assive reads (reading all 15)_ with Reed-
)] Solomon achieves even lower latency, but it comes at a
The key metric for small I/O is latency and the nUM- gt of many more 1/0s. The relative number of 1/Os,
ber of 1/Os taken by the requests. We run experiment$, o majized by that of direct read, is shown in Figure P(b).
with a mixture of direct read (reading a single fragment), the fast reconstruction and the I/0 cost savings are the
reconstruction read with Reed-SoIo'mon.an(.j LRC. Th&easons why we chose LRC over Reed-Solomon for Win-
average latency results are summarized in Figlre 9. 40s Azure Storage’s erasure coding.
When the cluster load is light, all the latencies ap-
pear very low and comparable. There is not much differ2-2 ~ Large 1/Os
ence between direct read and reconstruction with either We now examine the reconstruction performance of
Reed-Solomon or LRC. However, when the cluster loaddMB large I/Os. The key metric is latency and bandwidth
is heavy, there are definitely differences. consumption. We compare direct read to reconstruction
When a data fragment is unavailable, the reconstrucwith Reed-Solomon and LRC. The results are presented
tion read with Reed-Solomon can be served by randomlyn Figure[10.
selectingt = 12 fragments out of the remaining 15 frag- The results are very different from the small I/O case.
ments to perform erasure decoding. Unfortunately, theEven when the cluster load is light, the reconstruction
latency turns out much larger than that of direct read -with erasure coding is already much slower than direct
305msvs. 91ms —because itis determined by the sloweséad, given the amount of bandwidth it consumes. Com-
fragment among the entire selection. Given the high lapared to direct read taking 99ms, Reed-Solomon with 12

10

fragments takes 893ms — 9 times slower. as upgrades, even though there is no background data re-
In large 1/Os, the latency is mostly bottlenecked by building, reads trying to access unavailable nodes ate stil
network and disk bandwidth, and the bottleneck for theseserved through reconstruction.
results was the 1Gbps network card on the storage nodes. Complementary to system techniques, such as load
Since LRC reduces the number of fragments by half, itshalancing and prioritization [11], LRC explores whether
latency is 418ms and significantly reduced from that ofthe erasure coding scheme itself can be optimized to re-
Reed-Solomon. Note that, different from the small /O duce repair traffic and improve user 1/Os.
case, aggressive reads with Reed-Solomon using more Erasure Code Design:LRC is a critical improvement
fragments does not help, but rather hurts latency. Th%\/er our own Pyram|d codes [14] LRC exp|oits non-
observation is similar when the cluster load is heavy. uniform parity degrees, where some parities connect to
Because of the significantly reduced latency and theewer data nodes than others. Intuitively, the paritieswit
bandwidth savings, which are particularly important fewer degrees facilitate efficient reconstruction. This di
when the system is under heavy load or has to recovefection was originally pioneered for communication by
from a rack failure, we chose LRC for Windows Azure |andmark papers on Low Density Parity Check (LDPC)
Storage. codes|[[15], 16]. LDPC were recently explored in the area
5.3 Decoding Latency of storage[[1/7._20]. In particular, Plank et al. [17] ap-
@Iied enumeration and heuristic methods to search for
&)_arity-check erasure codes of small length. Due to expo-

Solomon and LRC. The average latency of decodindﬂemial search space, the exploration was limited to 3, 4
4KB fragments is 1'3 2us for Reed-Solomon and 7 12u§md 5 parities. The codes discovered cannot tolerate arbi-
for LRC. Decoding is.faster in LRC than Reed—SoIo.montrary three failures, which is the minimum requirement in

because only half the number of fragments are involvedVAS- Stepped Combination codes]20] are LDPC codes

Even so, the decoding latencies are typically in microsecwith very small length, offering fault tolerance guarantee
onds an,dseveral orders of magnitude smaller than the and efficient reconstruction, but do not provide the same

overall latency to transfer the fragments to perform thetrade-offs that LRC can achleve...)
reconstruction. Therefore, from the latency of decod- Reed-Solomon Codes are Maximum Distance Separa-

ing standpoint, LRC and Reed-Solomon are comparab!€® (MDS) codes([12], which require minimum storage

ble. Note that, pure XOR-based codes, such as Weavdverhead for given fault tolerance. LRC is not MDS and
codes[[18], HoVer code5 [19] and Stepped Combinatiorfus requires higher storage overhead for the same fault

codes[[20], can be decoded even faster. The gain of fastdplerance. The additional storage overhead from the local
decodihg however. would not matter in WAS. as theParities are exploited for efficient reconstruction. This d

decoding time is orders of magnitude smaller than thd €ction of trading storage overhead for reconstruction ef-
transfer time. ficiency is also explored by other state-of-the-art erasure

codes designed specifically for storage systems, such as

6 Related Work Weaver code$ [18], HoVer codés [19] and Stepped Com-

Erasure Coding in Storage Systems:Erasure cod- bination codes [20]. We show that LRC achieves better
ing has been applied in many large-scale distributedrade-offs than these modern storage codes for WAS'’ era-
storage systems, including storage systems at Faceboskire coding design goals .
and Google [[3/ 4/ 15/18,19, 10]. The advantage of To improve reconstruction performance, instead of
erasure coding over simple replication is that it canreading from fewer fragments as in LRC, a promising
achieve much higher reliability with the same storage,alternative is to read instead from more fragments, but
or it requires much lower storage for the same relia-less data from each _[24, 125,126, 27]. However, practi-
bility [f]. The existing systems, however, do not ex- cal solutions known so far [26, 7] achieve only around
plore alternative erasure coding designs other than Ree@0%-30% savings in terms of I/O and bandwidth, much
Solomon codes [13]. In this work, we show that, un-less than LRC.
der the same reliability requirement, LRC allows a much
more efficient cost and performance trade-off than Reed—7 Summary
Solomon. Erasure coding is critical to reduce the cost of cloud

Performance: In erasure-coded storage systems, nodestorage, where our target storage overhead is 1.33x of
failures trigger rebuilding process, which in turn re- the original data. When using erasure coding, fast recon-
sults in degraded latency performance on reconstructiostruction of offline data fragments is important for perfor-
reads([6]. Moreover, experience shows that transient emance. In Windows Azure Storage, these data fragments
rors in which no data are lost account for more than 90%can be offline due to disk, node, rack and switch failures,
of data center failure$ [10]. During these periods as wellas well as during upgrades.

To conclude the results, we also wanted to compar
the latency spent on decoding fragments between Ree

11

We introduced Local Reconstruction Codes as a way13] I. S. Reed and G. Solomon, “Polynomial Codes over Certain F
to reduce the number of fragments that need to be read nite Fields”,J. SAM, 8(10), 300-304, 1960.
from to perform this reconstruction, and compared LRC[M]sCh Hua”?v y-dChgnv a”f J-A Li, "Pérfff%”_"d Co_desi ! Fl')?x'g'et

_ . chemes 10 lrade Space Tor Access Iciency In Rellable Data

to Reed-Solomon. We showed that LRC (12_’ 2'_ 2)' which Storage SystemsProc. of [IEEE NCA, Cambridge, MA, Jul. 2007.
has a storage overhead of 1.33x, saves significant 1/0 5] R. G. Gallager, “Low-Density Parity-Check CodeBIT Press
and bandwidth during reconstruction when compared t0 ~cambridge, MA, 1963.
Reed-Solomon (12, 4). In terms of latency, LRC hasjie] M. G. Luby et al., “Efficient Erasure Correcting CodetZEE
comparable latency for small I/Os and better latency for ~ Transactions on Information Theory, 2011.
Iarge 1/Os. [17] J. S. Plank, R. L. Collins, A. L. Buchsbaum, and M. G. Thoma-

We chose LRC (12 2 2) since it achieves our 1.33x SO “Small Parity-Check Erasure Codes - Exploration ance®bs

' ' vations,“Proc. DSN, 2005.
storage overhead target and has the above latency, I/) .
. 8] J. L. Hafner, “Weaver codes: Highly fault tolerant erescodes

and bandwidth advantages over Reed-Solomon. In ad- "o storage systemslSENIX FAST, 2005.
d?tion, we needed to _maintain dur_ability at the same Ofj1g] 3. L. Hafner, “HoVer Erasure Codes for Disk Array®foc. of
higher level than traditional 3 replicas, and LRC (12, 2, DS\, 2006.
2) provides better durability than the traditional apptoac [20] K. M. Greenan, X. Li, and J. J. Wylie, “Flat XOR-based sue
of keeping 3 copies. Finally, we explained how erasure tcogles fif” Slté’éaEg'\eA Syséem: CO”S”“C“S”TEWICEW f‘;g‘;‘éﬂ"y
coding is implemented, some of the design considera[—21] rs go S’I c Hass origesg's_tter_maz s Ynlfhog'_es' ot
. - . Gopalan, C. Ruang, H. SImitci, an . Yekhanin, nitoe
tions, and how we can efflglently lay out LRC (12, 2_, cality of Codeword SymbolsAllerton, 2011.
2) across the 20 fault domains and 10 upgrade domam[%Z] J. Blomer et al.,, “An XOR-Based Erasure-Resilient Cadin

used in Windows Azure Storage. Scheme,” Technical Report No. TR-95-048, ICSI, Berkeleyi-Ca
fornia, Aug. 1995.
8 Acknowledgements g

[23] J. Luo, L. Xu, and J. S. Plank, “An Efficient XOR-Schedgi

We would like to thank Andreas Haeberlen, Geoff Algorithm for Erasure Codes Encodindztoc. DSN, Lisbon, Por-
Voelker, and anonymous reviewers for providing valu- _ugal June, 2009.

able feedback on this paper. We would also like to than

|424] A. G. Dimakis et al., “Network Coding for Distributed Stme
. Systems,"|EEE Transactions on Information Theory, Vol. 56, Is-

all of the members of the Windows Azure Storage team. Y Y

References

sue 9, Sept. 2010.
[1] B. Calder et al., “Windows Azure Storage: A Highly Avdile

[25] L. Xiang et al., “Optimal recovery of single disk failure RDP
code storage system#CM SGMETRICS, 2010.

Cloud Storage Service with Strong ConsistendfCM SOSP,

2011.

[26] O. Khan et al., “Rethinking Erasure Codes for Cloud File
[2] D.T.Meyeretal., “Fast and Cautious Evolution of Cloudiage,”

Systems: Minimizing 1/0O for Recovery and Degraded Reads,”
HotStorage, 2010.

USENIX FAST, San Jose, Feb. 2012.
[27] Y. Hu et al., “NCCloud: Applying Network Coding for thet@-
[3] J. Kubiatowicz et al., “OceanStore: An Architecture f8tobal-
Scale Persistent StoragéCM ASPLOS, Nov. 2000.

[4] A. Haeberlen, A. Mislove, and P. Druschel, “Glacier: Hig
durable, decentralized storage despite massive corrééabecks,”
USENIX NSDI, 2005.

[5] M. Abd-El-Malek et al., “Ursa Minor: Versatile Clustdrased
Storage, USENIX FAST, 2005.

[6] C. Ungureanu et al., “HydraFS: A High-Throughput FilesSy

tem for the HYDRAstor Content-Addressable Storage System,”

USENIX FAST, 2010.

[7] H. Weatherspoon, and J. Kubiatowicz, “Erasure codingrepli-
cation: A quantitative comparisoni Proc. IPTPS, 2001.

[8] D. Borthakur et al., “HDFS RAID,'Hadoop User Group Meeting,
Nov. 2010.

[9] A. Fikes, “Storage Architecture and ChallengeSgogle Faculty
Summit, 2010.

[10] D. Ford et al., “Availability in Globally Distributed 8rage Sys-
tems,”,USENIX OSDI, 2010.

[11] L. Tian et al., “PRO: A Popularity-based Multi-threati&ke-
construction Optimization for RAID-Structured Storage t8yss,”
USENIX FAST, 2007

[12] F. J. MacWilliams and N. J. A. Sloane, “The Theory of Error

Correcting Codes Amsterdam: North-Holland, 1977.

12

age Repair in a Cloud-of-ClouddJSENIX FAST, San Jose, 2012.

[28] J. H. Howard et al., “Scale and Performance in a Distedugile
System,"ACM ToCS, Feb. 1988.

[29] M. Satyanarayanan et al., “CODA: A Highly Available &iSys-
tem for a Distributed Workstation EnvironmentEEE Transac-
tions on Computers, Apr. 1990.

[30] B. Liskov et al., “Replication in the Harp File SystenACM
SOSP, Pacific Grove, CA, Oct. 1991.

[31] F. Dabek et al., “Wide-Area Cooperative Storage withSCF
ACM SOSP, 2001.

[32] B. G. Chun et al., “Efficient Replica Maintenance for Diisuted
Storage SystemsPSENIX NSDI, 2006.

[33] Q. Xin et al., “Reliability mechanisms for very large sige sys-
tems,” Proc. of |EEE Conference on Mass Storage Systems and
Technologies, 2003.

[34] S. Nath et al., “Subtleties in Tolerating Correlatedltas in
Wide-Area Storage System$JSENIX NSDI, 2006.

[35] A. Krioukov et al., “Parity Lost and Parity RegainedJSENIX
FAST, Feb. 2008.

[36] L.N.Bairavasundaram et al., “An Analysis of Data Cqation in
the Storage StackJSENIX FAST, Feb. 2008.

[37] L. Lamport, “The Part-Time Parliament CM Transactions on
Computer Systems, vol. 16, no. 2, pp. 133-169, May 1998.

[38] J. K. Resch, and J. S. Plank, “AONT-RS: Blending Seguaitd
Performance in Dispersed Storage SystetdSENIX FAST, Feb.
2011.

	Introduction
	Local Reconstruction Codes
	Definition
	Fault Tolerance
	Constructing Coding Equations
	Putting Things Together
	Checking Decodability

	Optimizing Storage Cost, Reliability and Performance
	Summary

	Reliability Model and Code Selection
	Reliability Model
	Modeling (6, 2, 2) LRC
	Reliability of (6, 2, 2) LRC

	Cost and Performance Trade-offs
	Code Parameter Selection
	Comparison - Modern Storage Codes
	Correlated Failures

	Erasure Coding Implementation in WAS
	Stream Layer Architecture
	Erasure Coding in the Stream Layer
	Using Local Reconstruction Codes in Windows Azure Storage
	Designing for Erasure Coding

	Performance
	Small I/Os
	Large I/Os
	Decoding Latency

	Related Work
	Summary
	Acknowledgements

