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Abstract
Windows Azure Storage (WAS) is a cloud storage sys-

tem that provides customers the ability to store seem-
ingly limitless amounts of data for any duration of time.
WAS customers have access to their data from anywhere,
at any time, and only pay for what they use and store. To
provide durability for that data and to keep the cost of
storage low, WAS uses erasure coding.

In this paper we introduce a new set of codes for era-
sure coding called Local Reconstruction Codes (LRC).
LRC reduces the number of erasure coding fragments
that need to be read when reconstructing data fragments
that are offline, while still keeping the storage overhead
low. The important benefits of LRC are that it reduces the
bandwidth and I/Os required for repair reads over prior
codes, while still allowing a significant reduction in stor-
age overhead. We describe how LRC is used in WAS to
provide low overhead durable storage with consistently
low read latencies.

1 Introduction
Windows Azure Storage (WAS) [1] is a scalable cloud

storage system that has been in production since Novem-
ber 2008. It is used inside Microsoft for applications
such as social networking search, serving video, music
and game content, managing medical records, and more.
In addition, there are thousands of customers outside Mi-
crosoft using WAS, and anyone can sign up over the In-
ternet to use the system. WAS provides cloud storage
in the form of Blobs (user files), Tables (structured stor-
age), Queues (message delivery), and Drives (network
mounted VHDs). These data abstractions provide the
overall storage and work flow for applications running
in the cloud.

WAS stores all of its data into an append-only dis-
tributed file system called the stream layer [1]. Data is
appended to the end of activeextents, which are repli-
cated three times by the underlying stream layer. The
data is originally written to 3 full copies to keep the data
durable. Once reaching a certain size (e.g., 1 GB), ex-
tents are sealed. These sealed extents can no longer be
modified and thus make perfect candidates for erasure
coding. WAS then erasure codes a sealed extent lazily in
the background, and once the extent is erasure-coded the
original 3 full copies of the extent are deleted.

The motivation for using erasure coding in WAS
comes from the need to reduce the cost of storage. Era-
sure coding can reduce the cost of storage over 50%,

which is a tremendous cost saving as we will soon sur-
pass an Exabyte of storage. There are the obvious cost
savings from purchasing less hardware to store that much
data, but there are significant savings from the fact that
this also reduces our data center footprint by 1/2, the
power savings from running 1/2 the hardware, along with
other savings.

The trade-off for using erasure coding instead of keep-
ing 3 full copies is performance. The performance hit
comes when dealing withi) a lost or offline data frag-
ment andii) hot storage nodes. When an extent is
erasure-coded, it is broken up intok data fragments, and
a set of parity fragments. In WAS, a data fragment may
be lost due to a disk, node or rack failure. In addition,
cloud services areperpetually in beta [2] due to frequent
upgrades. A data fragment may be offline for seconds to
a few minutes due to an upgrade where the storage node
process may be restarted or the OS for the storage node
may be rebooted. During this time, if there is an on-
demand read from a client to a fragment on the storage
node being upgraded, WAS reads from enough fragments
in order to dynamically reconstruct the data being asked
for to return the data to the client. This reconstruction
needs to be optimized to be as fast as possible and use
as little networking bandwidth and I/Os as possible, with
the goal to have the reconstruction time consistently low
to meet customer SLAs.

When using erasure coding, the data fragment the
client’s request is asking for is stored on a specific stor-
age node, which can greatly increase the risk of a storage
node becoming hot, which could affect latency. One way
that WAS can deal with hot storage nodes is to recog-
nize the fragments that are hot and then replicate them to
cooler storage nodes to balance out the load, or cache the
data and serve it directly from DRAM or SSDs. But, the
read performance can suffer for the potential set of reads
going to that storage node as it gets hot, until the data
is cached or load balanced. Therefore, one optimization
WAS has is if it looks like the read to a data fragment is
going to take too long, WAS in parallel tries to perform a
reconstruction of the data fragment (effectively treating
the storage node with the original data fragment as if it
was offline) and return to the client whichever of the two
results is faster.

For both of the above cases the time to reconstruct a
data fragment for on-demand client requests is crucial.
The problem is that the reconstruction operation is only
as fast as the slowest storage node to respond to reading



of the data fragments. In addition, we want to reduce
storage costs down to 1.33x of the original data using
erasure coding. This could be accomplished using the
standard approach of Reed-Solomon codes [13] where
we would have (12, 4), which is 12 data fragments and
4 code fragments. This means that to do the reconstruc-
tion we would need to read from a set of 12 fragments.
This i) greatly increases the chance of hitting a hot stor-
age node, andii) increases the network costs and I/Os
and adds latency to read that many fragments to do the
reconstruction. Therefore, we want to design a new fam-
ily of codes to use for WAS that provides the following
characteristics:

1. Reduce the minimal number of fragments that need
to be read from to reconstruct a data fragment. This
provides the following benefits:i) reduces the net-
work overhead and number of I/Os to perform a re-
construction;ii) reduces the time it takes to perform
the reconstruction since fewer fragments need to be
read. We have found the time to perform the re-
construction is often dominated by the slowest frag-
ments (the stragglers) to be read from.

2. Provide significant reduction in storage overhead
to 1.33x while maintaining higher durability than a
system that keeps 3 replicas for the data.

In this paper, we introduce Local Reconstruction Codes
(LRC) that provide the above properties. In addition, we
describe our erasure coding implementation and impor-
tant design decisions.

2 Local Reconstruction Codes
In this section, we illustrate LRC and its properties

through small examples, which are shorter codes (thus
higher overhead) than what we use in production, in or-
der to simplify the description of LRC .

2.1 Definition
We start with a Reed-Solomon code example to ex-

plain the concept ofreconstruction cost. A (6, 3) Reed-
Solomon code contains 6 data fragments and 3 parity
fragments, where each parity is computed from all the
6 data fragments. When any data fragment becomes un-
available, no matter which data and parity fragments are
used for reconstruction, 6 fragments are always required.
We definereconstruction cost as the number of frag-
ments required to reconstruct an unavailabledata frag-
ment. Here, the reconstruction cost equals to 6.

The goal of LRC is to reduce the reconstruction cost.
It achieves this by computing some of the parities from
a subset of the data fragments. Continuing the example
with 6 data fragments, LRC generates 4 (instead of 3)
parities. The first two parities (denoted asp0 andp1) are
global parities and are computed fromall the data frag-
ments. But, for the other two parities, LRC divides the

x0 y0x1 x2 y2y1

p0

p1
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Figure 1:A (6, 2, 2) LRC Example. (k = 6 data frag-
ments,l = 2 local parities andr = 2 global parities.)

data fragments into two equal size groups and computes
one local parity for each group. For convenience, we
name the 6 data fragments (x0, x1 andx2) and (y0, y1
andy2). Then, local paritypx is computed from the 3
data fragments in one group (x0, x1 andx2), and local
paritypy from the 3 data fragments in another group (y0,
y1 andy2).

Now, let’s walk through reconstructingx0. Instead of
readingp0 (or p1) and the other 5 data fragments (x1,
x2, y0, y1 andy2), it is more efficient to readpx and two
data fragments (x1 andx2) to computex0. It is easy to
verify that the reconstruction ofany single data fragment
requires only 3 fragments, half the number required by
the Reed-Solomon code.

This LRC example adds one more parity than the
Reed-Solomon one, so it might appear that LRC reduces
reconstruction cost at the expense of higher storage over-
head. In practice, however, these two examples achieve
completely different trade-off points in the design space,
as described in Section 3.3. In addition, LRC provides
more options than Reed-Solomon code, in terms of trad-
ing off storage overhead and reconstruction cost.

We now formally define Local Reconstruction Codes.
A (k, l, r) LRC dividesk data fragments intol groups,
with k/l data fragments in each group. It computes one
local parity within each group. In addition, it computes
r global parities from all the data fragments. Letn be
the total number of fragments (data + parity). Thenn =
k + l + r. Hence, the normalized storage overhead is
n/k = 1 + (l + r)/k. The LRC in our example is a
(6, 2, 2) LRC with storage cost of1 + 4/6 = 1.67x, as
illustrated in Figure 1.

2.2 Fault Tolerance
Thus far, we have only defined which data fragments

are used to compute each parity in LRC. To complete
the code definition, we also need to determinecoding
equations, that is, how the parities are computed from
the data fragments. We choose the coding equations such
that LRC can achieve theMaximally Recoverable (MR)
property [14], which means it can decode any failure pat-
tern which is information-theoretically decodable.

Let’s first explain the Maximally Recoverable prop-
erty. Given the (6, 2, 2) LRC example, it contains 4 par-
ity fragments and can tolerateup to 4 failures. However,
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Figure 2: Decoding 3 and 4 Failures in LRC.

LRC is not Maximum Distance Separable [12] and there-
fore cannot toleratearbitrary 4 failures. For instance, say
the 4 failures arex1, x2, x3 andpx. This failure pattern
is non-decodable because there are only two parities -
the global parities - that can help to decode the 3 miss-
ing data fragments. The other local paritypy is useless
in this example. It isimpossible to decode 3 data frag-
ments from merely 2 parity fragments, regardless of cod-
ing equations. These types of failure patterns are called
information-theoretically non-decodable.

Failure patterns that are possible to reconstruct are
calledinformation-theoretically decodable. For instance,
the 3-failure pattern in Figure 2(a) and the 4-failure pat-
tern in Figure 2(b) are both information-theoretically de-
codable. For these two failure patterns, it is possible to
construct coding equations such that it is equivalent to
solving 3 unknowns using 3 linearly independent equa-
tions in Figure 2(a) and 4 unknowns using 4 linearly in-
dependent equations in Figure 2(b).

Conceivably, it is not difficult to construct a set of cod-
ing equations that can decode a specific failure pattern.
However, the real challenge is to construct asingle set of
coding equations that achieves theMaximally Recover-
able (MR) property [14], or being able to decode all the
information-theoretically decodable failure patterns – the
exact goal of LRC.

2.2.1 Constructing Coding Equations
It turns out that the LRC can tolerate arbitrary 3 fail-

ures by choosing the following two sets of coding coeffi-
cients (α’s andβ’s) for groupx and groupy, respectively.
We skip the proofs due to space limitation. Let

qx,0 = α0x0 + α1x1 + α2x2 (1)

qx,1 = α2

0
x0 + α2

1
x1 + α2

2
x2 (2)

qx,2 = x0 + x1 + x2 (3)

and

qy,0 = β0y0 + β1y1 + β2y2 (4)

qy,1 = β2

0
y0 + β2

1
y1 + β2

2
y2 (5)

qy,2 = y0 + y1 + y2. (6)

Then, the LRC coding equations are as follows:

p0 = qx,0 + qy,0, p1 = qx,1 + qy,1, (7)

px = qx,2, py = qy,2. (8)

Next, we determine the values ofα’s andβ’s so that
the LRC can decode all information-theoretically decod-
able 4 failures. We focus on non-trivial cases as follows:

1. None of the four parities fails. The four failures
are equally divided between groupx and groupy.
Hence, we have four equations whose coefficients
are given by the matrix, which result in the follow-
ing determinant:

G =









1 1 0 0
0 0 1 1
αi αj βs βt

α2

i α2

j β2

s β2

t









Det(G) = (αj − αi)(βt − βs)(αi + αj − βs − βt).

2. Only one of px and py fails. Assumepy fails. For
the remaining three failures, two are in groupx and
the third one in groupy. We now have three equa-
tions with coefficients given by

G′ =





1 1 0
αi αj βs

α2

i α2

j β2

s





Det(G′) = βs(αj − αi)(βs − αj − αi).

3. Both px and py fail. In addition, the remaining two
failures are divided between groupx and groupy.
We have two equations with coefficients given by

G′′ =

(

αi βs

α2

i β2

s

)

Det(G′′) = αiβs(βs − αi).

To ensure all the cases are decodable, all the matrices
G, G′ andG′′ should be non-singular, which leads to the
following conditions:

αi, αj , βs, βt 6= 0 (9)

αi, αj 6= βs, βt (10)

αi + αj 6= βs + βt (11)

One way to fulfill these conditions is to assign toα’s
and β’s the elements from a finite field GF(24) [12],
where every element in the field is represented by 4 bits.
α’s are chosen among the elements whose lower order 2
bits are zero. Similarly,β’s are chosen among the ele-
ments whose higher order 2 bits are zero. That way, the
lower order 2 bits ofα’s (and the sum ofα’s) are always
zero, and the higher order 2 bits ofβ’s (and the sum of
β’s) are always zero. Hence, they will never be equal and
all the above conditions are satisfied.

This way of constructing coding equations requires a
very small finite field and makes implementation practi-
cal. It is a critical improvement over our own Pyramid
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codes [14]. In Pyramid codes, coding equation coeffi-
cients are discovered through a search algorithm, whose
complexity grows exponentially with the length of the
code. For parameters considered in Windows Azure
Storage, the search algorithm approach would have re-
sulted in a large finite field, which makes encoding and
decoding complexity high.

2.2.2 Putting Things Together
To summarize, the(6, 2, 2) LRC is capable of decod-

ing arbitrary three failures. It can also decode all the
information-theoretically decodable four failure patterns,
which accounts for 86% of all the four failures. In short,
the (6, 2, 2) LRC achieves the Maximally Recoverable
property [14].

2.2.3 Checking Decodability
Given a failure pattern, how can we easily check

whether it is information-theoretically decodable? Here
is an efficient algorithm. For each local group, if the lo-
cal parity is available, while at least one data fragment
is erased, weswap the parity with one erased data frag-
ment. The swap operation marks the data fragment as
available and the parity as erased. Once we complete
all the local groups, we examine the data fragments and
the global parities. If the total number of erased frag-
ments (data and parity) is no more than the number of
global parities, the algorithm declares the failure pat-
tern information-theoretically decodable. Otherwise, it
is non-decodable. This algorithm can be used to verify
that the examples in Figure 2 are indeed decodable.

2.3 Optimizing Storage Cost, Reliability
and Performance

Throughout the entire section, we have been focusing
on the (6, 2, 2) LRC example. It is important to note that
all the properties demonstrated by the example general-
ize to arbitrary coding parameters.

In general, the key properties of a(k, l, r) LRC are:
i) single data fragment failure can be decoded fromk/l
fragments;ii) arbitrary failures up tor + 1 can be de-
coded. Based on the following theorem, these properties
impose a lower bound on the number of parities [21].

Theorem 1. For any (n, k) linear code (with k data sym-
bols and n− k parity symbols) to have the property:

1. arbitrary r + 1 symbol failures can be decoded;
2. single data symbol failure can be recovered from

dk/le symbols,

the following condition is necessary:

n− k ≥ l + r. (12)

Since the number of parities of LRC meets the lower
boundexactly, LRC achieves its properties with the min-
imal number of parities.

2.4 Summary
Now, we summarize Local Reconstruction Codes. A

(k, l, r) LRC dividesk data fragments intol local groups.
It encodesl local parities, one for each local group, and
r global parities. Any single data fragment failure can be
decoded fromk/l fragments within its local group.

In addition, LRC achieves Maximally Recoverable
property. It tolerates up tor + 1 arbitrary fragment fail-
ures. It also tolerates failures more thanr+1 (up tol+r),
provided those are information-theoretically decodable.

Finally, LRC provides low storage overhead. Among
all the codes that can decode single data fragment fail-
ure fromk/l fragments and tolerater + 1 failures, LRC
requires the minimum number of parities.

3 Reliability Model and Code Selection
There are many choices of parametersk, l and r

for LRC. The question is: what parameters should we
choose in practice? To answer this, we first need to un-
derstand the reliability achieved by each set of param-
eters. Since 3-replication is an accepted industry stan-
dard, we use the reliability of 3-replication as a refer-
ence. Only those sets of parameters that achieve equal or
higher reliability than 3-replication are considered.

3.1 Reliability Model
Reliability has long been a key focus in distributed

storage systems [28, 29, 30, 31]. Markov models are
commonly used to capture the reliability of distributed
storage systems. The model is flexible to consider both
independent or correlated failures [10, 32, 33, 34]. We
add a simple extension to generalize the Markov model,
in order to capture unique state transitions in LRC. Those
transitions are introduced because the failure mode de-
pends on not only the size of failure, but also which sub-
set of nodes fails. In our study, we focus on independent
failures, but the study can be readily generalized to cor-
related failures [10, 34].

3.1.1 Modeling (6, 2, 2) LRC

We start with the standard Markov model to analyze
reliability. Each state in the Markov process represents
the number of available fragments (data and parity). For
example, Figure 3 plots the Markov model diagram for
the(6, 2, 2) LRC.

Let λ denote the failure rate of a single fragment.
Then, the transition rate from all fragments healthy
State 10 to one fragment failureState 9 is 10λ.
The extension from the standard Markov model lies in
State 7, which can transition into two states with 6
healthy fragments.State 6 represents a state where
there are four decodable failures. On the other hand,
State 6F represents a state with four non-decodable
failures. Letpd denote the percentage of decodable four
failure cases. Then the transition rate fromState 7 to
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State 6 is 7λpd and the transition toState 6F is
7λ(1− pd).�� � � � � ������	
 �� �� ����
 ��	� 	� 	��������
�
Figure 3: Markov Reliability Model for the (6, 2,
2) LRC. (State represents the number of healthy frag-
ments.)

In the reverse direction, letρ9 denote the transition rate
from one fragment failurestate 9 back to all frag-
ments healthystate 10, which equals to the average
repair rate of single-fragment failures.

Assume there areM storage nodes in the system, each
with S storage space andB network bandwidth. When
single storage node fails, assume the repair load is evenly
distributed among the remaining(M−1) nodes. Further,
assume repair traffic is throttled so that it only usesε of
the network bandwidth on each machine. When erasure
coding is applied, repairing one failure fragment requires
more than one fragment, denoted as repair costC. Then,
the average repair rate of single-fragment failures isρ9 =
ε(M − 1)B/(SC).

Other transition ratesρ8 throughρ6 can be calculated
similarly. In practice, however, the repair rates beyond
single failure are dominated by the time taken to detect
failure and trigger repair.1 LetT denote the detection and
triggering time. It suffices to setρ8 = ρ7 = ρ6 = 1/T .

Any single storage node stores both data and parity
fragments from different extents. So, when it fails, both
data and parity fragments need to be repaired. The repair
cost can be calculated by averaging across all the frag-
ments.

For the(6, 2, 2) LRC, it takes 3 fragments to repair any
of the 6 data fragments and the 2 local parities. Further,
it takes 6 fragments to repair the 2 global parities. Hence,
the average repair costC = (3 × 8 + 6 × 2)/10 = 3.6.
Also, enumerating all four failure patterns, we obtain the
decodability ratio aspd = 86%.

3.1.2 Reliability of (6, 2, 2) LRC

Now, we use a set of typical parameters (M = 400,
S = 16TB, B = 1Gbps,ε = 0.1 andT = 30 min-
utes) to calculate the reliability of the LRC, which is
also compared to 3-replication and Reed-Solomon code
in Table 1. Since the Reed-Solomon code tolerates three

1When multiple failures happen, most affected coding groups only
have a single fragment loss.Unlucky coding groups with two or more
fragment losses are relatively few. Therefore, not many fragments enter
multi-failure repair stages. In addition, multi-failure repairs are priori-
tized over single-failure ones. As a result, multi-failure repairs are fast
and they take very little time, compared to detecting the failures and
triggering the repairs.

MTTF (years)

3-replication 3.5×109

(6, 3) Reed-Solomon 6.1×1011

(6, 2, 2) LRC 2.6×1012

Table 1: Reliability of 3-Replication, RS and LRC.

failures, while 3-replication tolerates only two failures,
it should be no surprise that the Reed-Solomon code of-
fers higher reliability than 3-replication. Similarly, the
LRC tolerates not only three failures, but also 86% of
the four-failure cases, so it naturally achieves the highest
reliability.

3.2 Cost and Performance Trade-offs
Each set of LRC parameters (k, l andr) yields one set

of values of reliability, reconstruction cost and storage
overhead. For the (6, 2, 2) LRC, the reliability (MTTF in
years) is2.6 × 1012, the reconstruction cost is 3 and the
storage overhead is 1.67x.

We obtain many sets of values by varying the param-
eters. Since each fragment has to place on a different
fault domain, the number of fault domains in a cluster
limits the total number of fragments in the code. We
use 20 as the limit here, since our storage stamps (clus-
ters) have up to 20 fault domains. Using the reliability
(MTTF) of 3-replication as the threshold, we keep those
sets of parameters that yield equal or higher reliability
than 3-replication. We then plot the storage overhead
and the reconstruction cost of the remaining sets in Fig-
ure 4. Again, each individual point represents one set of
coding parameters. Each parameter set represents cer-
tain trade-offs between storage cost and reconstruction
performance.

Different coding parameters can result in the same
storage overhead (such as 1.5x), but vastly different re-
construction cost. In practice, it only makes sense to
choose the one with the lower reconstruction cost. There-
fore, we outline the lower bound of all the trade-off
points. The lower bound curve characterizes the funda-
mental trade-off between storage cost and reconstruction
performance for LRC.

3.3 Code Parameter Selection
Similarly, for (k, r) Reed-Solomon code, we vary the

parametersk andr (so long ask + r ≤ 20) and also ob-
tain a lower bound cost and performance trade-off curve.
We compare Reed-Solomon to LRC in Figure 5. On the
Reed-Solomon curve, we mark two special points, which
are specific parameters chosen by existing planet-scale
cloud storage systems. In particular, RS (10, 4) is used
in HDFS-RAID in Facebook [8] and RS (6, 3) in GFS II
in Google [9, 10]. Again, note that all the trade-off points
achieve higher reliability than 3-replication, so they are
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Figure 6: LRC vs. Modern Codes.

candidates for WAS.
The comparison shows that LRC achieves better cost

and performance trade-off than Reed-Solomon across the
range of parameters. If we keep the storage overhead the
same, reconstruction in LRC is much more efficient than
that in Reed-Solomon. On the other hand, if we keep re-
construction cost the same, LRC can greatly reduce stor-
age overhead, compared to Reed-Solomon. In general,
we can choose a point along the cost and performance
trade-off curve, which can reduce storage overhead and
reconstruction cost at the same time.

Compared to (6, 3) Reed-Solomon, we could keep
storage overhead the same (at 1.5x) and replace the
Reed-Solomon code with a (12, 4, 2) LRC. Now, the
reconstruction cost is reduced from 6 to 3 for single-
fragment failures, a reduction of 50%. This is shown by
the vertical move in Figure 5.

Alternatively, as shown by the horizontal move in Fig-
ure 5, we could keep reconstruction cost the same (at
6) and replace the Reed-Solomon code with a (12, 2, 2)
LRC. Now, the storage overhead is reduced from 1.5x to
1.33x. For the scale of WAS, such reduction translates
into significant savings.

3.4 Comparison - Modern Storage Codes
We apply the same reliability analysis to state-of-the-

art erasure codes designed specifically for storage sys-
tems, such as Weaver codes [18], HoVer codes [19] and
Stepped Combination codes [20]. We examine the trade-
off between reconstruction cost and storage overhead
when these codes are at least as reliable as 3-replication.

The results are plotted in Figure 6. The storage over-
head of Weaver codes is 2x or higher, so only a single
point (storage overhead = 2x, reconstruction cost = 3) is
shown in the Figure. We observe that the trade-off curve
of Stepped Combination codes is strictly below that of
Reed-Solomon. Therefore, both codes can achieve more
efficient reconstruction than Reed-Solomon when stor-
age overhead is fixed. Similarly, they require less storage
overhead when reconstruction cost is fixed. HoVer codes
offer many trade-off points better than Reed-Solomon.

Compared to these modern storage codes, LRC is
superior in terms of the trade-off between reconstruc-
tion cost and storage overhead. The primary reason is
that LRC separates parity fragments into local ones and
global ones. In this way, local parities only involve min-
imum data fragments and can thus be most efficient for
providing reconstruction reads when there is a hot spot,
for reconstructing single failures, and for reconstructing
a single fragment that is offline due to upgrade. On the
other hand, global parities involve all the data fragments
and can thus be most useful to provide fault tolerance
when there are multiple failures. In contrast, in Weaver
codes, HoVer codes and Stepped Combination codes, all
parities carry both the duty of reconstruction and fault
tolerance. Therefore, they cannot achieve the same trade-
off as LRC.

LRC is optimized for reconstructing data fragments,
but not parities, in order to quickly reconstruct on-
demand based reads from clients. In terms of parity re-
construction, Weaver codes, HoVer codes and Stepped
Combination codes can be more efficient. For instance,
let’s compare Stepped Combination code to LRC at the
storage overhead of 1.5x, where both codes consist of
12 data fragments and 6 parities. For the Stepped Com-
bination code, every parity can be reconstructed from 3
fragments, while for LRC the reconstruction of global
parities requires as many as 12 fragments. It turns out
that there is fundamental contention between parity re-
construction and data fragment reconstruction, which we
studied in detail separately [21]. In WAS, since parity
reconstruction happens only when a parity is lost (e.g.,
disk, node or rack failure), it is off the critical path of
serving client reads. Therefore, it is desirable to trade the
efficiency of parity reconstruction in order to improve the
performance of data fragment reconstruction, as is done
in LRC.

3.5 Correlated Failures
The Markov reliability model described in Section 3.1

assumes failures are independent. In practice, correlated
failures do happen [10, 34]. One common correlated fail-
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ure source is all of the servers under the same fault do-
main. WAS avoids these correlated failures by always
placing fragments belonging to the same coding group
in different fault domains.

To account for additional correlated failures, the
Markov reliability model can be readily extended by
adding transition arcs between non-adjacent states [10].

4 Erasure Coding Implementation in WAS
The WAS architecture has three layers within a storage

stamp (cluster) - front-end layer, partitioned object layer
and stream replication layer [1].

Erasure coding in WAS is implemented in the stream
layer as a complementary technique to full data repli-
cation. It is also possible to implement erasure cod-
ing across multiple storage stamps on several data cen-
ters [38]. Our choice to implement erasure coding inside
the stream layer is based on the fact that it fits the over-
all WAS architecture where the stream layer is responsi-
ble for keeping the data durable within a stamp and the
partition layer is responsible for geo-replicating the data
between data centers (see [1] for more details).

4.1 Stream Layer Architecture
The main components of the stream layer are the

Stream Managers (SM), which is a Paxos [37] replicated
server, and Extent Nodes (EN) (see Figure 7).

Streams used by the partition layer are saved as a list of
extents in the stream layer. Each extent consists of a list
of append blocks. Each block is CRC’d and this block is
the level of granularity the partitioned object layer uses
for appending data to the stream, as well as reading data
(the whole block is read to get any bytes out of the block,
since the CRC is checked on every read). Each extent is
replicated on multiple (usually three) ENs. Each write
operation is committed to all nodes in a replica set in a
daisy chain, before an acknowledgment is sent back to
the client. Write operations for a stream keep appending
to an extent until the extent reaches its maximum size (in
the range of 1GB-3GB) or until there is a failure in the
replica set. In either case, a new extent on a new replica
set is created and the previous extent is sealed. When
an extent becomes sealed, its data is immutable, and it
becomes a candidate for erasure coding.

4.2 Erasure Coding in the Stream Layer
The erasure coding process is completely asyn-

chronous and off the critical path of client writes. The
SM periodically scans all sealed extents and schedules a
subset of them for erasure coding based on stream poli-
cies and system load. We configure the system to auto-
matically erasure code extents storing Blob data, but also
have the option to erasure code Table extents too.

As a first step of erasure coding of an extent, the SM
creates fragments on a set of ENs whose number depends

EN EN EN

EN EN EN

SM

EN

EN

SMSM

paxos

A. Erasure code 
an extent

B. Ack with 
Metadata

Stream Layer
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2
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Figure 7: Erasure Coding of an Extent (not all target
ENs are shown).

on the erasure coding parameters, for example 16 frag-
ments for LRC (12, 2, 2).

The SM designates one of the ENs in the extent’s
replica set as the coordinator of erasure coding (see Fig-
ure 7) and sends it the metadata for the replica set. From
then on, the coordinator EN has the responsibility of
completing the erasure coding. The coordinator EN has,
locally on its node, the full extent that is to be erasure-
coded. The EN prepares the extent for erasure coding by
deciding where the boundaries for all of the fragments
will be in the extent. It chooses to break the extent into
fragments at append block boundaries and not at arbi-
trary offsets. This ensures that reading a block will not
cross multiple fragments.

After the coordinator EN decides what the fragment
offsets are, it communicates those to the target ENs that
will hold each of the data and parity fragments. Then
the coordinator EN starts the encoding process and keeps
sending the encoded fragments to their designated ENs.
The coordinator EN, as well as each target EN, keeps
track of the progress made and persists that information
into each new fragment. If a failure occurs at any mo-
ment in this process, the rest of the work can be picked
up by another EN based on the progress information per-
sisted in each fragment. After an entire extent is coded,
the coordinator EN notifies the SM, which updates the
metadata of the extent with fragment boundaries and
completion flags. Finally, the SM schedules full replicas
of the extent for deletion as they are no longer needed.

The fragments of an extent can be read directly by a
client (i.e., the partition or front-end layer in WAS) by
contacting the EN that has the fragment. However, if
that target EN is not available or is a hot spot, the client
can contact any of the ENs that has any of the fragments
of the extent, and perform a reconstruction read (see Fig-
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ure 8). That EN would read the other needed fragments
from other ENs, then reconstruct that fragment, cache
the reconstructed fragment locally in case there are other
reads to it, and return the results to the client. LRC re-
duces the cost of this reconstruction operation consider-
ably by reducing the number of source ENs that need to
be accessed.

If the EN or the disk drive that hosts the extent frag-
ment is unavailable for an extended period of time, the
SM initiates the reconstruction of the fragment on a dif-
ferent EN. This operation is almost identical to the recon-
struction steps shown in Figure 8 except for the fact that
the operation is initiated by the SM instead of the client,
and the data is written to disk rather than being sent back
to the client.

4.3 Using Local Reconstruction Codes in
Windows Azure Storage

When LRC is used as an erasure coding algorithm,
each extent is divided intok equal-sizedata fragments.
Thenl local andr globalparity fragments are created.

The placement of the fragments takes into account two
factors: i) load, which favors less occupied and less
loaded extent nodes;ii) reliability, which avoids plac-
ing two fragments (belonging to the same erasure cod-
ing group) into the same correlated domain. There are
two primary correlated domains: fault domain and up-
grade domain. A fault domain, such as rack, categorizes
a group of nodes which can fail together due to com-
mon hardware failure. An upgrade domain categorizes
a group of nodes which are taken offline and upgraded
at the same time during each upgrade cycle. Upgrade
domains are typically orthogonal to fault domains.

Let’s now use LRC (12, 2, 2) as an example and il-
lustrate an actual fragment placement in WAS. A WAS
stamp consists of 20 racks. For maximum reliability,
each of the total 16 fragments for an extent is placed in

a different rack. If each fragment were similarly placed
on a different upgrade domain, then at least 16 upgrade
domains are required. In practice, however, too many
upgrade domains can slow down upgrades and it is de-
sirable to keep the number of upgrade domains low. In
WAS, we currently use 10 upgrade domains. This means
that we have at most 10% of the storage stamps (clus-
ter) resources offline at any point in time during a rolling
upgrade.

Given our desire to have fewer upgrade domains than
fragments, we need an approach for placing the frag-
ments across the upgrade domains to still allow LRC to
perform its fast reconstruction for the fragments that are
offline. To that end, we exploit the local group property
of LRC and group fragments belonging to different lo-
cal groups into same upgrade domains. In particular, we
place the two local groupsx andy so that their data frag-
mentsxi andyi are in the same upgrade domaini (i.e.,
x0 andy0 are placed in the same upgrade domain, but
different fault domains). Similarly, we place the local
paritiespx andpy in one upgrade domain as well. The
two global parities are placed in two separate upgrade
domains from all other fragments.

Take for example LRC (12, 2, 2). In total, we use 9
upgrade domains for placing the fragments for an extent.
There are two local groups, each with 6 data fragments,
plus 2 local parities (1 per group), and then 2 global pari-
ties. When using 9 upgrade domains, we put the 2 global
parities into two upgrade domains with no other frag-
ments in them, we then put the 2 local parities into the
same upgrade domain with no other fragments in them,
and then the remaining 6 upgrade domains hold the 12
data fragments for the 2 local groups.

During an upgrade period, when one upgrade domain
is taken offline, every single data fragment can still be ac-
cessed efficiently - either reading directly from the frag-
ment or reconstructing from other fragments within its
local group.

4.4 Designing for Erasure Coding
Scheduling of Various I/O Types. The stream layer

handles a large mix of I/O types at a given time: on-
demand open/close, read, and append operations from
clients, create, delete, replicate, reconstruct, scrub, and
move operations generated by the system itself, and
more. Letting all these I/Os happen at their own pace can
quickly render the system unusable. To make the system
fair and responsive, operations are subject to throttling
and scheduling at all levels of the storage system. Every
EN keeps track of its load at the network ports and on
individual disks to decide to accept, reject, or delay I/O
requests. Similarly, the SM keeps track of data replica-
tion load on individual ENs and the system as a whole
to make decisions on when to initiate replication, erasure
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coding, deletion, and various other system maintenance
operations. Because both erasure coding and decoding
requires accessing multiple ENs, efficiently scheduling
and throttling these operations is crucial to have fair per-
formance for other I/O types. In addition, it is also im-
portant to make sure erasure coding is keeping up with
the incoming data rate from customers as well as inter-
nal system functions such as garbage collection. We have
a Petabyte of new data being stored to WAS every cou-
ple of days, and the built out capacity expects a certain
fraction of this data to be erasure-coded. Therefore, the
erasure coding needs to be scheduled such that it keeps
up with the incoming rate of data, even when there are
critical re-replications that also need to be scheduled due
to a lost disk, node or rack.

Reconstruction Read-ahead and Caching.Recon-
struction of unavailable fragments is done in unit sizes
greater than the individual append blocks (up to 5MB) to
reduce the number of disk and network I/Os. This read-
ahead data is cached in memory (up to 256MB) of the
EN that has done the reconstruction. Further sequential
reads are satisfied directly from memory.

Consistency of Coded Data. Data corruption can
happen throughout the storage stack for numerous rea-
sons [36]. In a large-scale distributed storage system,
data can become corrupted while at rest, while being read
or written in memory, and while passing through several
data paths. Therefore, it is essential to check the con-
sistency of the data in every step of the storage system
operations in addition to periodically scrubbing the data
at rest.

Checksum and parity are the two primary mechanisms
to protect against data corruption [35]. In WAS, we em-
ploy various CRC (Cyclic Redundancy Check) fields to
detect data and metadata corruptions. For example, each
append block contains a header with CRC of the data
block, which is checked when the data is written and ev-
ery time data is read. When a particular data read or
reconstruction operation fails due to CRC checks, the
operation is retried using other combinations of erasure-
coded fragments. Also, the fragment with the corrupted
block is scheduled for regeneration on the next available
EN.

After each erasure encoding operation, several decod-
ing combinations are tried from memory on the coordi-
nator EN to check for successful restorations. This step
is to ensure that the erasure coding algorithm itself does
not introduce data inconsistency. For LRC (12, 2, 2),
we perform the following decoding validations before
allowing the EC to complete:i) randomly choose one
data fragment in each local group and reconstruct it us-
ing its local group;ii) randomly choose one data frag-
ment and reconstruct it using one global parity and the
remaining data fragments;iii) randomly choose one data

fragment and reconstruct it using the other global parity
and the remaining data fragments;iv) randomly choose
two data fragments and reconstruct them;v) randomly
choose three data fragments and reconstruct them; and
vi) randomly choose four data fragments (at least one in
each group) and reconstruct them. After each decoding
combination above, the CRC of the decoded fragment is
checked against the CRC of the data fragment for suc-
cessful reconstruction of data.

Finally, the coordinator EN performs a CRC of all of
the final data fragments and checks that CRC against the
original CRC of the full extent that needed to be erasure-
coded. This last step ensures we have not used data that
might become corrupted in memory during coding op-
erations. If all these checks pass, the resulting coded
fragments are persisted on storage disks. If any failure
is detected during this process, the erasure coding oper-
ation is aborted, leaving the full extent copies intact, and
the SM schedules erasure coding again on another EN
later.

Arithmetic for Erasure Coding. Directly using Ga-
lois Field arithmetic for the erasure coding implementa-
tion is expensive because of all the emulation operations
required on top of the integer arithmetic. Therefore, it is
general practice to optimize Galois Field arithmetic op-
erations by pre-computing and using addition and mul-
tiplication tables, which improves coding speed. In ad-
dition, Reed-Solomon codes can be further optimized by
a transformation that enables the use of XOR operations
exclusively [22]. To get the best possible performance
for this transformation, the XOR operations can be or-
dered specifically based on the patterns in the coding
and decoding matrices [23]. This scheduling removes
most of the redundant operations and eliminates check-
ing the coding matrix again and again during the actual
coding pass. WAS uses all of the above optimizations
to streamline in-memory encode and decode operations.
Since modern CPUs perform XOR operations extremely
fast, in-memory encode and decode can be performed at
the speed which the input and output buffers can be ac-
cessed.

5 Performance
WAS provides cloud storage in the form of Blobs (user

files), Tables (structured storage), Queues (message de-
livery), and Drives (network mounted VHDs). Applica-
tions have different workloads, which access each type
of storage differently. The size of I/O can be polarized:
small I/O is typically in the 4KB to 64KB range, predom-
inantly assessing Tables and Queues; large I/Os (mostly
4MB), primarily accessing Blobs; and Drives can see a
mixture of both. In this section, we characterize the per-
formance of LRC and compare it to Reed-Solomon for
small and large I/Os, respectively.
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Figure 9: Small (4KB) I/O Reconstruction - (12, 4)
Reed-Solomon vs. (12, 2, 2) LRC.

We compare LRC (12, 2, 2) to Reed-Solomon (12,
4), both of which yield storage cost at 1.33x. Note that
(12, 3) Reed-Solomon isnot an option, because its reli-
ability is lower than 3-replication. Results are obtained
on our production cluster with significant load variation
over time. We separate the results based on the cluster
load and contrast the gain of LRC when the cluster is
lightly loaded to when it is heavily loaded. The produc-
tion cluster, where these results were gathered, has one
1Gbps NIC for each storage node.

5.1 Small I/Os
The key metric for small I/O is latency and the num-

ber of I/Os taken by the requests. We run experiments
with a mixture of direct read (reading a single fragment),
reconstruction read with Reed-Solomon and LRC. The
average latency results are summarized in Figure 9.

When the cluster load is light, all the latencies ap-
pear very low and comparable. There is not much differ-
ence between direct read and reconstruction with either
Reed-Solomon or LRC. However, when the cluster load
is heavy, there are definitely differences.

When a data fragment is unavailable, the reconstruc-
tion read with Reed-Solomon can be served by randomly
selectingk = 12 fragments out of the remaining 15 frag-
ments to perform erasure decoding. Unfortunately, the
latency turns out much larger than that of direct read –
305ms vs. 91ms – because it is determined by the slowest
fragment among the entire selection. Given the high la-
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Figure 10:Large (4MB) I/O Reconstruction - (12, 4)
Reed-Solomon vs. (12, 2, 2) LRC.

tency, we exploit a simple technique - selecting more (de-
noted ask′) fragments and decoding from the firstk ar-
rivals (represented asRS (read k’) or RS+(k’)
in Figure 9). This technique appears very effective in
weeding out slow fragments and reduces the latency dra-
matically.

In comparison, reconstruction with LRC is fast. It
requires only 6 fragments to be read and achieves the
latency of 166ms, which is comparable to 151ms with
Reed-Solomon reading 13 fragments. Note that ex-
tremely aggressive reads (reading all 15) with Reed-
Solomon achieves even lower latency, but it comes at a
cost of many more I/Os. The relative number of I/Os,
normalized by that of direct read, is shown in Figure 9(b).
The fast reconstruction and the I/O cost savings are the
reasons why we chose LRC over Reed-Solomon for Win-
dows Azure Storage’s erasure coding.

5.2 Large I/Os
We now examine the reconstruction performance of

4MB large I/Os. The key metric is latency and bandwidth
consumption. We compare direct read to reconstruction
with Reed-Solomon and LRC. The results are presented
in Figure 10.

The results are very different from the small I/O case.
Even when the cluster load is light, the reconstruction
with erasure coding is already much slower than direct
read, given the amount of bandwidth it consumes. Com-
pared to direct read taking 99ms, Reed-Solomon with 12

10



fragments takes 893ms – 9 times slower.
In large I/Os, the latency is mostly bottlenecked by

network and disk bandwidth, and the bottleneck for these
results was the 1Gbps network card on the storage nodes.
Since LRC reduces the number of fragments by half, its
latency is 418ms and significantly reduced from that of
Reed-Solomon. Note that, different from the small I/O
case, aggressive reads with Reed-Solomon using more
fragments does not help, but rather hurts latency. The
observation is similar when the cluster load is heavy.

Because of the significantly reduced latency and the
bandwidth savings, which are particularly important
when the system is under heavy load or has to recover
from a rack failure, we chose LRC for Windows Azure
Storage.

5.3 Decoding Latency
To conclude the results, we also wanted to compare

the latency spent on decoding fragments between Reed-
Solomon and LRC. The average latency of decoding
4KB fragments is 13.2us for Reed-Solomon and 7.12us
for LRC. Decoding is faster in LRC than Reed-Solomon
because only half the number of fragments are involved.
Even so, the decoding latencies are typically in microsec-
onds andseveral orders of magnitude smaller than the
overall latency to transfer the fragments to perform the
reconstruction. Therefore, from the latency of decod-
ing standpoint, LRC and Reed-Solomon are compara-
ble. Note that, pure XOR-based codes, such as Weaver
codes [18], HoVer codes [19] and Stepped Combination
codes [20], can be decoded even faster. The gain of faster
decoding, however, would not matter in WAS, as the
decoding time is orders of magnitude smaller than the
transfer time.

6 Related Work
Erasure Coding in Storage Systems:Erasure cod-

ing has been applied in many large-scale distributed
storage systems, including storage systems at Facebook
and Google [3, 4, 5, 8, 9, 10]. The advantage of
erasure coding over simple replication is that it can
achieve much higher reliability with the same storage,
or it requires much lower storage for the same relia-
bility [7]. The existing systems, however, do not ex-
plore alternative erasure coding designs other than Reed-
Solomon codes [13]. In this work, we show that, un-
der the same reliability requirement, LRC allows a much
more efficient cost and performance trade-off than Reed-
Solomon.

Performance: In erasure-coded storage systems, node
failures trigger rebuilding process, which in turn re-
sults in degraded latency performance on reconstruction
reads [6]. Moreover, experience shows that transient er-
rors in which no data are lost account for more than 90%
of data center failures [10]. During these periods as well

as upgrades, even though there is no background data re-
building, reads trying to access unavailable nodes are still
served through reconstruction.

Complementary to system techniques, such as load
balancing and prioritization [11], LRC explores whether
the erasure coding scheme itself can be optimized to re-
duce repair traffic and improve user I/Os.

Erasure Code Design:LRC is a critical improvement
over our own Pyramid codes [14]. LRC exploits non-
uniform parity degrees, where some parities connect to
fewer data nodes than others. Intuitively, the parities with
fewer degrees facilitate efficient reconstruction. This di-
rection was originally pioneered for communication by
landmark papers on Low Density Parity Check (LDPC)
codes [15, 16]. LDPC were recently explored in the area
of storage [17, 20]. In particular, Plank et al. [17] ap-
plied enumeration and heuristic methods to search for
parity-check erasure codes of small length. Due to expo-
nential search space, the exploration was limited to 3, 4
and 5 parities. The codes discovered cannot tolerate arbi-
trary three failures, which is the minimum requirement in
WAS. Stepped Combination codes [20] are LDPC codes
with very small length, offering fault tolerance guarantee
and efficient reconstruction, but do not provide the same
trade-offs that LRC can achieve..

Reed-Solomon Codes are Maximum Distance Separa-
ble (MDS) codes [12], which require minimum storage
overhead for given fault tolerance. LRC is not MDS and
thus requires higher storage overhead for the same fault
tolerance. The additional storage overhead from the local
parities are exploited for efficient reconstruction. This di-
rection of trading storage overhead for reconstruction ef-
ficiency is also explored by other state-of-the-art erasure
codes designed specifically for storage systems, such as
Weaver codes [18], HoVer codes [19] and Stepped Com-
bination codes [20]. We show that LRC achieves better
trade-offs than these modern storage codes for WAS’ era-
sure coding design goals .

To improve reconstruction performance, instead of
reading from fewer fragments as in LRC, a promising
alternative is to read instead from more fragments, but
less data from each [24, 25, 26, 27]. However, practi-
cal solutions known so far [26, 27] achieve only around
20%-30% savings in terms of I/O and bandwidth, much
less than LRC.

7 Summary
Erasure coding is critical to reduce the cost of cloud

storage, where our target storage overhead is 1.33x of
the original data. When using erasure coding, fast recon-
struction of offline data fragments is important for perfor-
mance. In Windows Azure Storage, these data fragments
can be offline due to disk, node, rack and switch failures,
as well as during upgrades.
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We introduced Local Reconstruction Codes as a way
to reduce the number of fragments that need to be read
from to perform this reconstruction, and compared LRC
to Reed-Solomon. We showed that LRC (12, 2, 2), which
has a storage overhead of 1.33x, saves significant I/Os
and bandwidth during reconstruction when compared to
Reed-Solomon (12, 4). In terms of latency, LRC has
comparable latency for small I/Os and better latency for
large I/Os.

We chose LRC (12, 2, 2) since it achieves our 1.33x
storage overhead target and has the above latency, I/O
and bandwidth advantages over Reed-Solomon. In ad-
dition, we needed to maintain durability at the same or
higher level than traditional 3 replicas, and LRC (12, 2,
2) provides better durability than the traditional approach
of keeping 3 copies. Finally, we explained how erasure
coding is implemented, some of the design considera-
tions, and how we can efficiently lay out LRC (12, 2,
2) across the 20 fault domains and 10 upgrade domains
used in Windows Azure Storage.
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