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Abstract

A finite-state machine (FSM) is an important abstraction

for solving several problems, including regular-expression

matching, tokenizing text, and Huffman decoding. FSM

computations typically involve data-dependent iterations

with unpredictable memory-access patterns making them

difficult to parallelize. This paper describes a parallel algo-

rithm for FSMs that breaks dependences across iterations by

efficiently enumerating transitions from all possible states

on each input symbol. This allows the algorithm to uti-

lize various sources of data parallelism available on modern

hardware, including vector instructions and multiple pro-

cessors/cores. For instance, on benchmarks from three FSM

applications: regular expressions, Huffman decoding, and

HTML tokenization, the parallel algorithm achieves up to a

3× speedup over optimized sequential baselines on a single

core, and linear speedups up to 21× on 8 cores.

Categories and Subject Descriptors D.1.3 [Concurrent

Programming]: Parallel programming; F.1.2 [Modes of

Computation]: Parallelism and concurrency

Keywords Parallelism, Finite State Machines, Regular Ex-

pression Matching, Huffman Decoding

1. Introduction

Hardware is parallel. While desktops, tablets, and even

phones have vector instructions, multiple cores, and GPUs,

many important algorithms are unable to exploit all of this

parallelism. This paper focuses on finite-state machines, a

class of applications that has previously been hard to paral-

lelize.

A finite-state machine (FSM) is a fundamental model of

computation [10] that is at the core of many practical appli-

cations ranging from regular-expression matching, tokeniz-
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Figure 1. An FSM containing four states that accepts C-

style comments in source code delineated by /* and */. The

input x represents all characters other than / and *.

ing text, dictionary-based decoding, network intrusion de-

tection, and feature extraction from web pages. Figure 1(a)

shows an example FSM that identifies C-style comments.

The table in Figure 1(b) determines how the FSM states tran-

sition on each input symbol, and Figure 1(c) is a straightfor-

ward implementation of this FSM that iteratively accesses

the transition table to obtain the state after each input sym-

bol.

FSMs are difficult to parallelize for two reasons. First,

there is a tight dependence between successive loop-iterations

making it nontrivial to distribute loops across multiple

processors. Second, FSMs perform little computation in

each iteration with memory-access patterns that are input-

dependent and unpredictable.1 This makes it difficult for

FSM implementations to use parallelism within a processor,

namely instruction-level parallelism, vector (SIMD) capa-

bilities and memory-level parallelism.

This paper presents an efficient parallel algorithm for

FSM computations that is able to utilize various kinds of

data parallelism available on modern hardware, both paral-

1 Alternately, FSM implementations can encode transition tables using a

large switch statement — trading unpredictable data accesses for unpre-

dictable control flow.
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Figure 2. Enumerative computation for parallelizing FSMs.

lelism across multiple processors and parallelism within a

single processor. The algorithm is up to 3× faster than opti-

mized sequential implementations on a single processor and

achieves subsequent multiplicative speedups with multiple

processors.

Figure 2 shows the key idea behind our parallel algorithm.

Consider a run of the FSM in Figure 1(a) on the input shown

in Figure 2. We can parallelize this computation by splitting

the input into two chunks I1 and I2 and performing the two

subcomputations in parallel. Obviously, this is not possible

unless we know the start state for the second subcomputa-

tion, which is the final state of the first subcomputation.

One way to break this dependency is to fork a version

of the second subcomputation starting from every state of

the FSM as shown in Figure 2. We call this an enumerative

computation as it enumerates all possible start states. Once

the first subcomputation has finished, we pick the version

of the enumerative computation that started from the correct

state, which in this case is state c. It is possible to generalize

this approach by splitting the input many times where all but

the first computation is done enumeratively in parallel (Sec-

tion 3).

The obvious disadvantage of this approach is the over-

head of the enumerative computation. For an FSM with n
states, an enumerative computation performs n times more

work than the sequential version. In other words, a naı̈ve

implementation requires a linear number of processors to

achieve constant speedups and does not scale for all but

small FSMs.

The main contributions of this paper are optimizations

that make this enumerative computation efficient. The first

optimization relies on the observation that different enumer-

ations perform redundant work when multiple states con-

verge to the same state on some input symbol (Section 5.2).

For instance, after reading a *, both states c and d transition

to state d in Figure 1(a). This causes the three of the four enu-

merations to converge after reading the first two input sym-

bols in Figure 2. We call the states of such non-redundant

computations active states. By dynamically utilizing conver-

gence, the overhead of the enumerative computation is pro-

portional to the number of active states and not to the total

number of state in the FSM.

Using realistic examples, this paper demonstrates that

most FSMs, even those with many states, often converge

to 16 or less active states for any input. This makes the

convergence optimization worthwhile. Our experiments also

show that while convergence is common, convergence to a

single state is rare. As a result, the enumerative computation

is still more expensive than the sequential computation.

A major component of this overhead is the transition-

table lookup required for each active state. To optimize this

cost, we use a range-coalesced representation of the tran-

sition table (Section 5.3). In this representation, states get

different identifiers based on the most recently seen input.

By appropriately assigning these identifiers, we ensure that

accesses made by active states are coalesced into a smaller

range of memory, reducing memory pressure.

Finally, we observe that different enumerations are in-

dependent and thus can be performed simultaneously using

different lanes of a single-instruction multiple-data (SIMD)

processor. One challenge in using SIMD instructions is the

need for a gather operation that accesses the transition ta-

ble at different offsets from each lane. Unfortunately, cur-

rent desktop processors do not yet support generic gather

operations. We use an existing SIMD primitive, shuffle,

to implement this operation.

Our benchmarks consist of thousands of FSMs from three

case studies: regular-expression matching, Huffman decod-

ing, and HTML tokenization (Section 6). For more than 80%

of these FSMs, our implementation performs one or two

shuffle operations per input symbol. The associativity of

these operations [26] allows the hardware to process mul-

tiple input symbols simultaneously, increasing instruction-

level parallelism. As a result, our parallel implementation is

up to 3× faster than optimized sequential implementations

on a single processor core. We further demonstrate multi-

plicative speedups on multiple processor cores, up to 21×
on 8 cores.

2. Background

This section provides a brief primer on FSMs and introduces

terminology used in the rest of the paper. It then describes a

general approach for parallelizing FSM computations.

2.1 Primer on Finite-State Machines

We assume that the reader is familiar with classic automata

theory, as described in Hopcroft and Ullmann [10]. A de-

terministic finite-state machine D is a tuple (Q,Σ, q0, δ, F ),
where Q is a finite set of states, Σ is a fixed alphabet, q0 ∈ Q
is the initial state, F ⊆ Q is the set of final states, and δ is

the transition function with type Q×Σ → Q. This paper fo-

cuses on deterministic FSMs. A nondeterministic FSM can

be converted to a deterministic FSM using standard tech-

niques [10], albeit with a worst-case exponential blowup in

the number of states. Applying the techniques discussed in



this paper to parallelize nondeterministic FSMs is left for

future work.

To determine if a string s = s1, s2, . . . , sm is accepted by

an FSM D, the FSM starts in state q0 and iteratively applies

the transition function to determine the state qi on reading

si using the recurrence qi = δ(qi−1, si). If the final state qm
is in F , then the string s is accepted by the FSM D. When

discussing our algorithm, we will also refer to a transition

function Ta that maps states to states such that Ta(q) = r
iff r = δ(q, a). In implementations, the transition function

is implemented as an array or arrays, in which case, we will

refer to Ta simply as T[a].

Applications sometimes perform actions on each state

transition (e.g. tokenization or decoding) apart from accept-

ing or rejecting the input string. This paper uses the Mealy

formalism [20] and assumes the existence of a φ function

that is invoked with the current input symbol si and the state

qi reached after reading that symbol. In the context of paral-

lelizing FSMs, we will make a simplistic assumption that the

φ function can be invoked out of order. Modifying sequential

clients of FSMs to satisfy this assumption is not discussed in

this paper.

2.2 Identifying Associative Operations in FSM

The relationship between FSM computations and semirings

is well known [2]. A semiring is an algebraic structure with

a generalized additive and multiplicative operations defined

on a domain. The properties of these operations ensure that

the generalized matrix multiplication in semirings is asso-

ciative. In theory, this allows one to parallelize problems that

can be cast as matrix multiplications in semirings.

Consider the semiring on the Boolean domain with dis-

junction as the additive operation and conjunction as the

multiplicative operation. For an FSM with n states, let Ms

be the n × n Boolean matrix, such that Ms[i, j] = true iff

state i transitions to state j on symbol s. For a given input

string s = s1, s2, ...sm, the matrix product

M = Msm · . . . ·Ms2 ·Ms1

has the property that M [i, j] is true iff the FSM reaches

state qj on reading the input s starting from state qi. Thus,

the FSM accepts the input iff M [0, j] is true for some state

qj ∈ F .

Ladner and Fischer [15] exploit this formulation to paral-

lelize FSM computation using parallel prefix-sums. Their al-

gorithm generalizes to nondeterministic FSMs and executes

in O(log(m)× n3) time with m processors, using the stan-

dard cubic algorithm for matrix multiplication.

Hillis and Steele [8] describe an improved parallel prefix

computation for evaluating deterministic FSMs that reduces

the overhead to O(log(m)×n). The basic idea, which forms

the basis for the enumerative computation described in Sec-

tion 1, is to succinctly encode FSM computations as compo-

sition of transition functions. If Tsi represents the transition

function on input si and ⊗ represents function composition,

then the function

T = Tsm ⊗ . . .⊗ Ts2 ⊗ Ts1

determines the final state of the FSM starting from some

state on input s1, s2, . . . , sm. Parallelization follows from

the fact that function composition is associative.

This paper builds on these theoretical insights. The key

contribution of this paper is in optimizing away the depen-

dence on n, the number of states in the FSM, using prop-

erties of FSMs seen in practice, and on demonstrating a

scalable implementation that exploits both fine-grained and

coarse-grained parallelism available in modern hardware.

3. Parallel Algorithm

This section describes the data-parallel FSM algorithm but

first introduces a primitive used to describe the algorithm.

3.1 Gather Primitive

Let S and T be arrays of length m and n respectively. A

gather operation, represented by S ⊗m,n T , is an array of

length m such that

(S ⊗m,n T )[i] = T [S[i]]

In essence, the array S contains indices (or addresses) that

are used to lookup the array T . Obviously, the lookup is

well-formed only when the indices are within the bounds of

T . For convenience, we will assume that the index modulo

n is used for such out-of-bound indices. Unless when nec-

essary, we will drop the subscripts and simply refer to the

gather of S and T as S ⊗ T . Gather is associative.

((S ⊗ T )⊗ U)[i] = U [(S ⊗ T )[i]] = U [T [S[i]]]

(S ⊗ (T ⊗ U))[i] = (T ⊗ U)[S[i]] = U [T [S[i]]]

When S is a set of FSM states and T is the transition

function for some input symbol, the elements of S ⊗ T are

the respective successor states for the states in S. In other

words, gather implements the functional composition of the

transition functions.

There is a trivial sequential implementation of ⊗m,n that

performs m memory lookups, assuming the contents of S
are already available in registers. More efficient implementa-

tions are possible with appropriate hardware support. For in-

stance, Intel SSE3 architectures provide a shuffle instruc-

tion that performs ⊗16,16 for byte arrays. Section 4 describes

a way to implement a general ⊗m,n using m/16 ∗ n/16 in-

vocations of ⊗16,16.

3.2 Base Enumerative Algorithm

Figure 3 provides the base enumerative algorithm for a given

start state st and an input sequence in. When compared

to the sequential algorithm in Figure 1(c), the enumerative



1 Base(State st, Input in){

2 States S = Id;

3 for (i=0; i<in.len; i++) {

4 a = in[i];

5 S = S ⊗ T[a];

6 φ(a, S[st]); }}

Figure 3. Base Enumerative Algorithm.

1 Base_ILP(State st, Input in){

2 States S = Id;

3 for (i=0; i<in.len/3; i+=3) {

4 (a,b,c) = (in[i], in[i+1], in[i+2]);

5 Sa = S ⊗ T[a]; Tbc = T[b] ⊗ T[c];

6 Sb = Sa ⊗ T[b]; S = Sa ⊗ Tbc;

7 φ(a, Sa[st]); φ(b, Sb[st]); φ(c, S[st]); }}

Figure 4. Unrolling the loop in Figure 3 exposes ILP. In-

structions in the same line can be executed in parallel.

algorithm maintains an array of states, S, at each step rather

than a single state. At each step, element i of S is the state

reached at that step if the FSM had started from state i. S is

initialized to the identity array Id whose element i is i.
On an input symbol a, the algorithm obtains the transition

function T[a]. The gather operation provides S for the next

iteration. In addition, the algorithm calls the output φ func-

tion on the actual FSM state S[st]. Of course, invoking the

φ function at each step is unnecessary when the FSM is only

determining an accept/reject decision on the input (say, when

performing regular-expression matching). In such cases, we

will assume that invoking the φ function after processing all

of the input provides the accept or reject decision.

3.3 Using Fine-Grained Parallelism

When compared to the sequential algorithm in Figure 1(c),

the base enumerative algorithm performs more work. How-

ever, the associativity of gather alleviates this overhead by

exposing instruction-level parallelism (ILP). For instance,

Figure 4 unrolls the loop three times (and assumes that the

input length is divisible by three). The instructions on the

same line do not depend on each other and thus can ex-

ecute in parallel. Assuming an efficient implementation of

gather, this additional ILP can make the base enumerative

algorithm run faster than the sequential version, despite per-

forming more work. Optimizations described in Section 5

enable this possibility.

3.4 Using Coarse-Grained Parallelism

Figure 5 shows the parallelization of the base enumerative

algorithm on multiple cores/machines, using an implemen-

tation of parallel-prefix sum [1, 15]. The parallel algorithm

distributes the input equally among available processors and

each processor processes its chunk in three phases. In the

first phase, each processor runs the base enumerative algo-

1 Base_Multicore(State st, Input in){

2 chunk = in.len/NumProc;

3

4 // Run chunks in parallel

5 States S[NumProc];

6 parallel.for (proc p in [0...NumProc-1]){

7 my_in = in[p*chunk .. (p+1)*chunk -1];

8 S[p] = T[my_in[0]];

9 for (i = 1; i<chunk; i++){

10 S[p] = S[p] ⊗ T[my_in[i]]; }}

11

12 // Compute start states for each chunk

13 State st[NumProc];

14 st[0] = st;

15 for (p in [1..NumProc -1]){

16 st[p] = S[p-1][st[p-1]];}

17

18 // Compute output in parallel

19 parallel.for (proc p in [0...NumProc-1]){

20 my_in = in[p*chunk .. (p+1)*chunk -1];

21 Base(st[p], my_in); }}

Figure 5. Using multiple cores to parallelize the base enu-

merative algorithm.

rithm on its chunk of the input in parallel. The end goal of the

first phase is to compute for each processor S[p], an array

that determines the final state of the FSM when processing

the input chunk from every starting state.

The sequential second phase (which can be parallelized,

if necessary), computes the start states for each processor

using these arrays. With the correct start states known, the

third phase simply invokes the base enumerative algorithm

for each input chunk in parallel. Note, the φ function is

only called in the third phase, making the first two phases

extremely fast. The implementations of the first and the third

phase can additionally benefit from fine-grained parallelism

as shown in Figure 4.

There are a variety of ways to implement a parallel-prefix

sum on modern parallel hardware. For example, prior work

has implemented these primitives on GPUs [4, 7, 29], on

a cluster [6, 36], or using threads [31]. In contrast, the al-

gorithm in Figure 5 is designed to minimize communica-

tion when the number processors is much smaller than the

amount of parallelism available (proportional to the size of

the input), which is the case for our applications.

4. Implementation of Gather

The performance of the parallel algorithms in Section 3

depend on an efficient gather. This sections provides such

an implementation.

4.1 Non-SIMD Gather

The straightforward implementation of S ⊗m,n T is with m
memory lookups. Figure 6 illustrates the performance of this

implementation on a gather microkernel. The microkernel

emulates the inner-loop of the base algorithm in Figure 3 on

random inputs and random transition funtions. In particular,
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Figure 6. Performance of ⊗m,n on a machine with SIMD

width W = 16.

the microkernel allocates 1024 arrays of size n = 1024, each

initialized with random values between 0 and n − 1. Then

for different values of m, it enters a tight loop that computes

S = S ⊗m,n Tr for a table Tr randomly picked from the

allocated arrays. Figure 6 compares the performance of the

microkernel with a sequential baseline of Figure 1(c).

The “Non-SIMD” line in Figure 6 shows that the com-

piler and the hardware are able to hide the cost of multi-

ple lookups (i.e., performance is at 1.0) for m up to 8. This

suggests that for small FSMs with less than or equal to 8

states, the enumerative algorithm incurs no additional over-

head. However, the performance degrades for larger values

of m.

4.2 SIMD Gather

Modern microprocessors are equipped with Single Instruc-

tion Multiply Data (SIMD) registers that apply an operation

on W data items in one instruction. In particular, x86 has

support for byte level shuffle of an array of W = 16 char-

acters that essentially implements ⊗16,16 for two SIMD reg-

isters. Future architectures are expected to increase the width

up to 1024 bytes along with a support for general purpose

gather [12].

Now, we will describe how to implement a general ⊗m,n

using multiple invocations of ⊗16,16. In this paper, we will

only need instances where m ≤ n. The implementation

is best understood through an example. Suppose the SIMD

width is W = 4 and we desire to implement S⊗m,nT when

n = m = 8 for the following arrays

S = [3, 5, 0, 1, 5, 4, 6, 2], T = [A,B,C,D,E, F,G,H]

The desired answer is [D,F,A,B, F,E,G,C]. Let us store

S and T into two SIMD registers S03 and S47, and T03 and

T47 respectively. Current implementations of shuffle use

the index modulo W when an index exceeds W . The first

four values of S ⊗ T can be obtained by performing

S03 ⊗ T03 = [D,B,A,B], S03 ⊗ T47 = [H,F,E, F ]

and blending the results based on whether the index exceeds

W or not. In fact, x86 supports a blend instruction for this

purpose. Thus,

(S ⊗ T )03 = blend(S03 ⊗ T03, S03 ⊗ T47, S03 < 4)

(S ⊗ T )47 = blend(S47 ⊗ T03, S47 ⊗ T47, S47 < 4)

Generalizing this example, ⊗m,n can be implemented using

(m ∗ n)/W invocations of ⊗W,W .

SIMD gather provides two benefits. First, it utilizes the

entire memory bandwidth between the processor and its L1

data cache. A single SIMD load fetches 128 bits while a non-

SIMD load can only fetch 64 bits. Second, SIMD gather ex-

ploits the fact that FSMs are memory bound computations

with underutilized functional units. The shuffle and blend

instructions use the functional units that would have other-

wise been idle.

Figure 6 illustrates the performance of SIMD gather for

various values of m and n for the gather microkernel running

on a machine with W = 16. When n = W , the SIMD gather

is 4.4× faster than the sequential baseline. The optimizations

discussed in Section 5 enable many of the FSMs from our

benchmarks to exploit this performance. For n up to 64, the

SIMD gather still outperforms the non-SIMD version. For

larger values of m, the overhead of performing (m ∗ n)/16
shuffle operations becomes a bottleneck. However, this

overhead can be hidden by parallelizing the enumerative

computation on multiple processor cores.

4.3 Implementation Details

The implementation uses C++ template specialization to in-

stantiate gather for appropriate values of m and n. We hand-

coded specialized implementations for all pairs of m and n
that are multiples of 16 in the range [16, 256]. Peculiarities

of x86make the implementation nontrivial. For instance, the

shuffle instruction in SSE 4.2 ( mm shuffle epi8) treats

indices as signed bytes and treats negative indices as index 0.

Supporting FSMs with greater than 127 states requires addi-

tional bit manipulation to handle the sign bit correctly. Sim-

ilarly, byte level shuffle is not implemented on AVX and

so our current implementation cannot utilize 256 bit wide

registers despite running on AVX hardware.

5. Optimizations

As discussed in the previous section, the cost of ⊗m,n de-

pends both on m and n. This section describes two optimiza-

tions for the parallel FSM algorithm, namely convergence

that reduces m and range coalescing that reduces n. We start

with a primitive necessary to explain these optimizations.

5.1 Factor Primitive

Given an array S, Factor(S) is a pair (L,U) such that

S = L ⊗ U and U contains only the unique elements of

S. (Here L stands for “lookup” and U stands for “unique”.)



1 Convergence( State st, Input in ){

2 States S = Id;

3 States Acc = Id;

4

5 for (i=0; i<in.len; i++){

6 S = S ⊗ T[in[i]];

7 if (conv_check()){

8 (L, U) = Factor(S);

9 S = U;

10 Acc = Acc ⊗ L; }

11 Sbase = Acc ⊗ S;

12 φ(i, Sbase[st]); }}

Figure 7. Convergence Algorithm

An example is given below:

[s, t, u, t, t, u, s] = [0, 1, 2, 1, 1, 2, 0]⊗ [s, t, u]

Note, |U | ≤ |S|. When performing S ⊗ T , identical

elements in S result in redundant lookups of T . We can

eliminate this redundancy by factoring S into (L,U) and

only performing U ⊗ T . This is particularly useful if the

result of the gather is used to perform subsequent gathers as

in the base enumerative algorithm in Figure 3.

Unfortunately, there is no direct support for the factor

operation in architectures today. Therefore, we implement

the straightforward sequential algorithm for this operation

that takes linear time. Accordingly, it is important to use the

factor operation sparingly.

5.2 Convergence Optimization

The key observation behind the convergence optimiza-

tion is that transition functions in most FSMs are not

permutations—many states transition to the same state on

a symbol. In Figure 1(a) for instance, both states c and d
transition to d on reading a ∗. Accordingly, many elements

of the array S in the base algorithm in Figure 3 are likely to

be the same. The convergence optimization eliminates this

redundancy by factoring.

Convergence Algorithm. Figure 7 shows the algorithm

with the convergence optimization. Periodically at line 8,

the algorithm factors S into L and U, uses U for subsequent

iterations. It also accumulates L into Acc (line 10). The cor-

rectness of the algorithm follows from the loop invariant

that Sbase at line 11 is the same as S at line 5 in Figure 3.

This invariant follows from the fact that S = L ⊗ U and the

associativity of ⊗.

We define active states as the states in S at the end of

a particular iteration. The number of active states is non-

increasing during the execution of this algorithm. As the

number of active states become smaller, gathers in subse-

quent loop iterations are faster. In essence, convergence al-

lows us to move left toward smaller values of m (number of

active states) along a performance curve in Figure 6 deter-

mined by n (the number of states in the FSM).

The algorithm in Figure 7 can be implemented to use both

the fine-grained parallelism within a core and the coarse-

grained parallelism across cores by appropriately modifying

the respective algorithms in Figure 4 and Figure 5. Also, it

is not necessary to compute all elements Sbase in an imple-

mentation as only the entry corresponding to the start state

st is required for the output φ function. We chose to present

the algorithm this way to make its correctness evident.

Frequency of Convergence Checks The conv check()

predicate at line 7 determines how often the algorithm

checks for convergence. Since factoring is not natively sup-

ported in the hardware, it is important to only check for

convergence when we expect the number of active states to

dramatically decrease since the last convergence check. For

our SIMD-based implementation, this decrease has to be

larger than the number of states that fit in a SIMD register

(which in many cases is 16) to reduce the cost of subsequent

gathers

We use two heuristics in our implementation. First,

we statically analyze the convergence characteristics (Sec-

tion 5.2 below) of the given FSM to determine the frequency

of convergence checks. Second, for every input symbol, we

pre-calculate the size of the range of the transition function

for that symbol. For instance, if the FSM can only go to one

of three states on an input symbol, then we know that the

number of active states after reading that symbol is less than

or equal to three.

Convergence in Practice Convergence arises when multi-

ple states transition to the same state on an input symbol—

that is, the transition function is many-to-one. There are nn

possible functions from n states to n states, but there are

only n! permutations. From Stirling’s approximation for the

factorial, it follows that there are exponentially more (en)

many-to-one functions than permutations. Thus, randomly

chosen FSMs are not likely to have transition functions that

are permutations, for reasonably large n.

FSMs, in practice, have more structure than randomly

generated FSMs and are likely to converge faster. For in-

stance, the transition function for a symbol might only be

defined for some of the states with the rest transitioning to an

error state or a reset state. To evaluate the rate convergence

in practice, we performed two experiments on FSMs gener-

ated from 2711 regular expressions in the Snort suite [27].

The number of states in these FSMs range from 1 to 4020,

with a median of 25.

Adversarial Inputs The first experiment studies conver-

gence under adversarial worst-case inputs. We emulated

the enumerative computation for all inputs of length k, and

picked the input that resulted in the most number of active

states. For these FSMs, the inputs are arbitrary character

strings, and thus there are 256k possible inputs of length k.

To perform the emulation efficiently, we systematically ex-

plore the state space of all configurations reached during an
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Figure 9. FSMs converge on randomly chosen inputs. All

FSMs converge to less than 16 active states after 20 steps.

enumerative computation, where a configuration is the set of

active states. There are 2n possible configurations. The very

fact that we are able to explore such a large state space is a

testament to convergence — many of the possible configu-

rations are not reachable from the initial configuration that

contains the set of all states.

Figure 8 shows the worst-case convergence for inputs

of length k shown on the logarithmic x-axis. The y-axis

shows the proportion of FSMs for which the number of

active states is respectively less than or equal to 16, 8, and

4 for a given k. The figure shows that around 90% of FSMs

converge to 16 active states or less after a mere 10 steps, and

95% converge after 200 steps. For inputs longer than this,

the convergence algorithm is guaranteed to use the fastest

SIMD-gather possible for a given n, the number of FSM

states, as shown in Figure 6.

Figure 8 also shows that only 80% ever converge to 8

active states, and less than 70% converge to 4 active states.

This has two important implications. First, an adversary can

always make the enumerative computation asymptotically

more expensive than the sequential computation. Second,

speculative approaches [13, 14, 24] that rely on predicting

the likely state of an FSM after reading some input will fail

on carefully designed inputs.

Random Inputs Our second experiment studies conver-

gence on non-adversarial inputs. Unfortunately, the Snort

regular expressions are designed for matching against (ad-

versarial) network traffic, and obtaining expected input dis-

tribution for these FSMs is not possible. We approximated

this by using inputs at random offsets in a large dump of

Wikipedia pages. Figure 9 shows the average number of ac-

tive states (y-axis) after running an FSM on 10 randomly

chosen inputs of a particular length (x-axis). The various

lines show respectively, the max, min, median, and the mean

number of active states for the 2711 Snort regular expres-

sions. As expected, we see better convergence than for ad-

versarial inputs. All of the FSMs converged to 16 active

states or less. But, more than half of the FSMs did not con-

verge to one active state.

5.3 Range Coalescing

Like convergence, range coalescing relies on the observation

that transition functions of FSMs are likely to be many-to-

one. In particular, the range of a transition function is likely

to be smaller than the number of states in the FSM. Range

coalescing uses this observation to reduce the range of mem-

ory addresses accessed by an enumerative computation for

each input symbol.

Running Example Consider the FSM in Figure 10 with

five states, p through t, and two input symbols a and b. The

range of a is {p, q, t} and the FSM is guaranteed to be in one

of these three states after reading a. This means that in the

next step, the FSM will only access three of the five rows

of the transition table T . The goal of range coalescing is

to ensure that these three rows are contiguous in memory.

Similarly, the range of b is {p, r, s} and we desire to make

these three rows contiguous after reading a b.
To achieve this, range coalescing maintains different

names for each state, one for each input symbol whose range

the state belongs to. In Figure 10, pa and pb are the two

names for p corresponding to a and b respectively. All other

states, get one name as they belong to the range of only

one symbol. We will refer to state names corresponding to a

symbol a simply as names of a.

Range coalescing generates a transition table for each in-

put symbol indexed by the names of that symbol. For in-

stance, the table Ta is indexed by pa, qa, ta. The FSM will

use Ta (instead of T ) for the lookup after reading an a and

Tb after reading a b. To ensure correct lookups, range coa-

lescing maintains the invariant that the current name always

corresponds to the last input symbol read by the FSM. This

requires that the transition tables use the names of a particu-

lar symbol when representing the destination of a transition

on that symbol. For instance, the columns of the transitions

tables Ta and Tb for a use the names of a.

Generation of Transition Tables The generation of range-

coalesced transition tables can be elegantly described using

the factor primitive. Let (La, Ua) = Factor(T [a]) be the

factorization of T [a] = [q, t, t, q, p], the transition function



T a b

p q r

q t s

r t p

s q r

t p s

⇒

Ta a b

pa qa rb

qa ta sb

ta pa sb

Tb a b

pb qa rb

rb ta pb

sb qa rb

Figure 10. Range-Coalescing Example.

of a in Figure 10. We have

T [a] = (La = [1, 2, 2, 1, 0])⊗ (Ua = [p, q, t])

We will use the indices of states in Ua as its names of a:

pa = 0, qa = 1, ta = 2. Then, La maps how states transition

on a when using the names of a for the destination states.

Ua provides a map from names of a to states. Similarly, we

will use Lb = [1, 2, 0, 1, 2] and Ub = [p, r, s] to describe

corresponding maps for b.
The transition function Ta[b] describes how names of a

transition to names of b on reading b. This is given by

Ta[b] = Ua ⊗ Lb

where Ua maps from names of a to states and Lb performs

the lookup but uses the names of b for the destination states.

Similarly, Ta[a] = Ua ⊗ La. Such pairwise combination of

two symbols generates all the entries in the range-coalesced

transition tables, as shown in Figure 10.

Range-Coalescing Algorithm Figure 11 describes the

range-coalescing algorithm. The algorithm precomputes the

transition tables for every input symbol as described above.

The algorithm initializes the set of states S with La for the

first symbol a at line 3. S now represents the states, repre-

sented as names of a, reached after reading a for all initial

states. Then, the algorithm sets T to Ta to be used for the

lookup in the next iteration.

For each input symbol b, the algorithm performs a gather

with the transition function T [b] at line 7. If the previous

symbol was a, then T points to Ta and Ta[b] performs the

transition lookup from names of a to names of b. The algo-

rithm then switches T to Tb to be used in the next step.

The correctness of the algorithm follows from the invari-

ant that Sbase at line 9 is the the same as S at line 5 in Fig-

ure 3. This invariant holds because Ta[b] = Ua ⊗ Lb and

gather is associative. This algorithm can be parallelized us-

ing both fine-grained and coarse-grained parallelism by ap-

propriately modifying the algorithms in Figure 4 and Fig-

ure 5.

Performance Discussion The key performance gain comes

from using smaller transition tables at each step. Range-

coalescing allows the use of ⊗m,n operations where n is

reduced from the number of states in the FSM to the range

1 RangeCoalescing( State st, Input in ){

2 a = in[0];

3 S = La;

4 T = Ta;

5 for (i=1; i<in.len; i++){

6 b = in[i];

7 S = S ⊗ T[b];

8 T = Tb;

9 Sbase = S ⊗ Ub;

10 φ (i, Sbase[st]); }}

Figure 11. Range-Coalescing Algorithm.

size of the last seen input symbol. In effect, range coalescing

allows us to move to a higher performance curve in Figure 6.

In contrast, the convergence optimization discussed in Sec-

tion 5.2 allows us to move left along a performance curve

(by reducing m). In practice, however, we avoid dynami-

cally switching between code that uses ⊗m,n for different

values of n. Thus, we set n to the maximum of the range

size for all input symbols.

Another benefit of range-coalescing is that the algorithm

only requires state names when processing input. Mapping

back to states is only required when calling the output φ
function. This can lead to efficient state encodings. For in-

stance, if an FSM has more than 256 states but the maximum

range size is less than 256, then the range-coalescing algo-

rithm can encode state names with a byte and use byte-level

SIMD gathers. In contrast, encoding states directly will oth-

erwise require the use of much-slower word-level gathers.

On the downside, a state gets as many names as its incom-

ing edges in the FSM. For an FSM with n states, e edges, and

k symbols in its input language, the original transition table

will have n×k entries (one for each state and input symbol),

while the range-coalesced tables will together have e×k en-

tries. In the worst case, the FSM is total and a transition is

defined for every symbol and every state. In this case, the

range tables can have as many as n × k2 entries. An imple-

mentation should ensure that this blow up does not impact

the runtime performance, say when the working set of the

range-coalesced tables no longer fit in the first-level cache.

Finally, in addition to the static overhead above, the algo-

rithm requires an additional memory access at line 8 when

compared to the base enumerative algorithm in Figure 3. As

discussed in Section 6, this additional lookup in the tight-

loop can deteriorate performance.

6. Case Studies

This section demonstrates the efficacy of our approach by

instantiating three real-world implementations: Snort regular

expressions, Huffman decoding, and HTML Tokenization.

Platform We conducted all experiments on an unloaded

Intel 2.67GHz Xeon (X5650) workstation with 16 cores

and 16GB RAM, running Windows 8. We use the Intel C++

compiler, version 12.1. For generality, we also repeated our
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Figure 12. Distribution of the number of states and the

maximum range sizes for 2711 Snort regular expressions.

experiments (not shown) on an older 8-core Intel 2GHz

(L5420) workstation and found slightly slower (e.g. due

to fewer cores and slower clock) but qualitatively similar

results.

Measurement We measure time from within each process

using clock t to record ticks. The experiments do not mea-

sure setup costs—only the time taken for one invocation

of each program. When we compare against a baseline, we

modify that code to provide comparable measurements. Our

benchmarks read all data into memory and then operate on

that data. The speed of commodity disks are in the order of

100 MByte/Sec and many of our implementations are an or-

der of magnitude faster.

Finally, to get statistically significant results, we run each

experiment 30 times and report the mean. We do not report

the 95% confidence interval of the mean when there is no

significant variation from the mean. We found that our per-

formance numbers are usually predictable as gather, our key

primitive, is dominated by regular computations.

6.1 Snort Regular Expressions

Snort [27] is a network intrusion prevention and detection

system. Snort comes with a large body of rules and signa-

tures that are used to match against network packets to detect

suspicious activity or attacks.

Benchmarks Regular expressions studied in this paper are

obtained from version 2.9.4.0 snapshot of the Snort rules.

We extracted the pcre: attribute from the rules and obtained

2711 regular expressions that our Perl-regular-expression

compatible front-end could parse. The remaining 2828 reg-

ular expressions contain Snort-specific extensions that our

front-end is not able to parse.

Figure 12 shows the distribution of the number of states in

the FSMs for the parsed regular expressions. More than 95%

of these regular expressions have less than 256 states, but the

maximum number of states is 4020. The median state size

is 25. Figure 12 also shows the opportunity for range coa-

lescing and reports the maximum range size of the transition
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pressions.

functions for these FSMs. 78% of these FSMs have a maxi-

mum range less than or equal to 16. The convergence prop-

erties of these FSMs are already discussed in Section 5.2.

Single-Core Performance Figure 13 shows the perfor-

mance of enumerative computation on a single processor

core using the SIMD-gather (Section 4.2). To reduce exper-

iment times, we randomly sampled 269 regular expressions

and the figure shows the speedup for both optimizations,

over the sequential baseline of Figure 1(c) with optimal loop

unrolling. For our convergence experiments (conv), we sort

along the x axis by the number of states in the FSM while

for our range-coalescing experiments (range), we sort by the

maximum range size of the transition functions. The graph

shows a series of plateaus. For convergence, each plateau

denotes 16 ∗ ⌈n/16⌉, where n is the number of states in the

FSM. For range coalescing each plateau is for 16 ∗ ⌈m/16⌉,

where m is the maximum range size of the transition func-

tion across all input symbols.

For FSMs with a maximum of 16 states, our implemen-

tation with either of the two optimization performs one

shuffle operation per input character. We observe up to

a 3× speedup with convergence (first plateau of figure). Due

to the increase in the size of the range-coalesced transition

tables and the additional memory lookup required to chose

the transition table at line 8 in Figure 11, we only see a 2.2×
speedup. However, many of the FSMs with more than 16

states, have a maximum range size that is less than 16. Range

coalescing benefits these FSMs. Since the maximum range

of the transition function is statically known, it is possible

for an FSM compiler to predetermine if the range coalescing

optimization will perform well or not.

Multi-Core Performance The benefit of an enumerative

computation with good single-core performance implies

multiplicative multi-core performance. Figure 14 demon-

strates the speedup obtained with multiple cores for both

convergence and range coalescing, where the baseline is

the respective single-core performance for each FSM. Both

implementations achieve near linear strong-scaling up to 8
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Figure 14. Multi-core performance for Snort regular ex-

pressions.

cores, after which the size of the input chunks per core is not

sufficient to justify the cost invoking more threads. Also, the

multi-core performance is mostly independent of the tech-

nique used to achieve single-core performance.

Larger FSMs Our goal in using Snort benchmark is to ob-

tain a large class of useful regular expressions. While we

generated FSMs from individual regular expressions, the

typical use of these Snort rules is to match an incoming

packet with all of the regular expressions at once. One way

to obtain much larger FSM ([19], for instance), is to create

a disjunction of all these expressions into a single regular

expression. The resulting orders-of-magnitude blowup up in

the number is well known [35]. It is unclear if our enumera-

tive approach scales to such large FSM. On the other hand,

creating a disjunction of regular expressions sequentializes a

problem that is originally embarrassingly parallel — match-

ing an input against many independent regular expressions.

6.2 Huffman Decoding

Another interesting application of FSMs is Huffman decod-

ing. Huffman coding is a variable length encoding/decoding

scheme, where each input character is encoded by a binary

string whose length is inversely proportional to its occur-

rence probability. These encodings are represented as paths

in a binary Huffman tree. Since the tree is finite, one can con-

sider Huffman decoding as an FSM that traverses the Huff-

man tree on each input bit and emits the decoded character

whenever it reaches a leaf. Huffman encoding is an embar-

rassingly parallel problem [11]. Instead, this paper focuses

on the decoding phase.

Baseline We initially used libhuffman [16], an open

source C library for Huffman encoding/decoding, which

is used in PHP, as the baseline. We soon realized that

libhuffman sequentially walks through each bit of an input

and updates the position of a pointer in a Huffman binary

tree. It spends most of its time performing bit operations and

pointer chasing and can decode at most 5 MB/s.
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Figure 15. Distribution of states in Huffman trees, before

and after range coalescing.

We implemented a sequential baseline that is two orders

of magnitude faster. Our baseline processes bytes rather than

bits. The idea is to unroll the FSM such that each transition

is a composition of 8 original transitions. Such an unrolling

increases the number of edges in the FSM but not in the num-

ber of states. The resulting sequential baseline can decode at

speeds greater than 300 MB/s.

Due to unrolling, each transition can potentially output

more than one character. This complicates the output φ func-

tion. We encode the output as a sequence of (statically prede-

termined) strings, rather than a sequence of characters. This

allows the φ function to be performed out of order. This re-

quires an additional pass to process the output into appropri-

ate form. We account for this pass in our evaluation.

Benchmarks We obtained 34 Huffman trees, each from

the 34 most downloaded books (as of July 4th, 2013) from

Project Gutenberg [25]. Each tree is slightly different based

on the distribution of characters in these texts. Similar to the

sequential baseline, we use an unrolled FSM whose inputs

are 8-bit characters.

Figure 15 shows the distribution of number of states and

the maximum range sizes of these FSM. The interesting ob-

servation is that while these Huffman trees can have as many

as 300 states, the maximum range size is at most 16 states.

Range coalescing provides two crucial advantages. First, we

can encode state names with bytes allowing us to use Intel’s

byte-level shuffle instruction. Second, since the lookup ta-

bles are not more than 16, the implementation requires a

single shuffle instruction for every input character. With

such efficient encoding, there is no advantage to use the

convergence optimization. The downside is that we create

256 range tables each of size 16*256. Accessing the 1MB of

range tables reduces the performance due to L1-cache limits.

Single-Core Performance Figure 16 shows the single-

core performance of our implementation using the SIMD-

gather (Section 4.2). A bar on this plot provides the (i) se-

quential baseline and (ii) the range-coalesced FSM for the 34

Huffman trees when decoding a 1GB file. We observe a 2×
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Figure 17. Multi-core performance for Huffman decoding

speedup over the sequential baseline for almost all Huffman

trees (three give 1.75×).

Multi-Core Performance Figure 17 demonstrates the strong

scaling of our approach with multiple cores. A point on this

graph (x,y) gives the runtime in seconds (y) as a function of

the number of processor cores used (x). We see near linear

speedups until 8 processors after which the scaling stops.

We expect our approach to scale for more processors with

larger inputs.

6.3 HTML Tokenization

The third case study uses another important application of

FSMs — lexing or tokenizing text. A tokenizer reads a

sequence of bytes, character by character, and categorizes

subsequences of those characters into tokens. In this section,

we implement a data-parallel tokenizer for HTML that is a

binary drop-in replacement for the one used in the crawler

of the web-search engine bing .

Baseline bing uses an optimized hand-written tokenizer

that uses switch statements to encode the FSM. For our

experiments, we tokenize a 6MB dump of HTML from

Wikipedia.

Benchmark We reverse engineered the bing implementa-

tion manually into an FSM with 27 states. The output φ func-

tion produces exactly the same output as bing allowing our
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Figure 18. Multi-core performance of HTML tokenization.

implementation to be integrated with existing clients. Addi-

tionally, this enables us to verify that our manually generated

FSM provides the same functionality as the hand-optimized

version in bing . As the FSM has less than 32 total states,

range-coalescing did not provide performance beyond what

the convergence optimization provided. We only report num-

bers with the convergence optimization.

The manual effort of extracting an FSM prevents us from

evaluating other tokenizers as part of this case study. To

the best of our knowledge, modern compilers use similar

hand-optimized lexers. Currently, we are not able to extract

FSMs from automatic lexer generators, such as flex [23],

that account for the complex acceptance and backtracking

semantics implemented in these lexers.

HTML-Tokenization Performance Figure 18 compares

the throughput of our baseline (Bing) to our implemen-

tation with a single-core implementation of convergence

(Bing+conv) and our multi-core implementations (from

threads:1 to threads:16). The y-axis is the tokenization

throughput in megabytes per second.

Our single-core implementation is 2.3× faster than the

baseline. Our multi-core implementations require two passes

over the input (Figure 5), once to determine the start state

for each processor core and a second time to invoke the

φ function. This explains the loss in performance between

Bing+conv and threads:1. With 16-cores, our implemen-

tation tokenizes at 3025 MByte/Sec; faster than the line-rate

of many networks (1000 MByte/Sec). This is 14× faster than

the baseline.

7. Related Work

Due to its importance, optimizing FSM computations has re-

ceived considerable attention in prior literature. This section

describes closely related work.

Parallel FSMs As described in Section 2, parallel algo-

rithms for FSMs have long been known [8, 15]. This pa-

per builds on these ideas and demonstrates an efficient im-

plementation that uses both fine-grained and coarse-grained

parallelism. The most related prior works are optimized im-



plementations [9, 22] of the Hillis and Steele algorithm [8].

Holub et al. [9] rely on the input FSM being k-local, which

requires that any two states converge to the same state on

any input of length k. As our experiments show (Figure 8),

most FSMs seen in practice are not k-local. Pan et al. [22]

use a powerset construction, similar to the one used to de-

terminize nondeterministic FSMs, to build an FSM that em-

ulates the enumerative computation of the input FSM. This

construction indirectly captures the convergence properties

observed in this paper. However, the power set construction

can result in exponential blow up in the number of states.

Our algorithm can be considered as a dynamic variant of

theirs which performs enumerative computation only on the

given input, thereby avoiding this exponential blowup.

Speculative Parallelization One way to parallelize across

dependencies is to speculate [13, 14, 19, 24]. When applied

to FSMs, this amounts to guessing, rather than enumerating,

the start state for all but the first chunk of the input (See

Figure 2). The key observation behind these approaches is

that two distinct states, the guessed state and the true start

state, are likely to converge to the same state after reading

some input. There are two major issues with a speculative

approach. First, the efficacy of a speculative approach is dif-

ficult to predict. As seen in our convergence studies (Fig-

ure 8 and Figure 9), convergence is not always guaranteed.

Further, if a processor does not converge on its chunk, then

the next processor is forced to restart from a new state. The

probability of such cascading misspeculations increases with

the number of processors, thereby limiting scalability. Sec-

ond, a speculative approach is still limited by the sequential

implementation on a single core. In contrast, enumerative

computation can use the fine-grained parallelism of a single

processor.

Bit-Parallel FSMs Another closely related approach uses

vector instructions to speed up single-core FSM perfor-

mance. In contrast, our goal is to achieve multi-core par-

allelism through enumerative computation and use vector

instructions to optimize the enumerative computation.

Parabix [18] converts an FSM computation into a se-

quence of bit operations where a bit is assigned for each

input symbol. This allows Parabix to process W characters

simultaneously on a SIMD machine of width W . Parabix

uses bitstream addition [3] to preserve dependences across

characters that occur in common text processing applica-

tions, such as XML parsing. While providing significant

single-core speedups, Parabix achieves limited paralleliza-

tion across multiple processors/cores. Moreover, their ap-

proach requires nontrivial processing to transform the input

string into a sequence of bitstreams. For tasks such as XML

processing, the resulting FSM is small enough that our im-

plementation requires a single shuffle instruction per input

symbol and we expect the single-core performance of our

implementation to be competitive with Parabix. However,

Parabix will provide better performance as future hardware

architectures support larger SIMD widths. In contrast, our

approach can scale the enumerative computation to larger

FSMs with larger SIMD widths.

NR-grep [21] uses bit-parallelism to simulate a nondeter-

ministic FSM for the purpose of pattern matching. By ap-

propriately assigning the bits of a machine word (or a SIMD

register), it transforms the FSM computation into a sequence

of bit operations. While this technique can be optimized for

special classes of patterns, matching regular expression in

their generality requires an input-dependent memory lookup

similar to the sequential algorithm in Figure 1(c).

Regular Expression Engines There is a large body of

work on parallel regular expression matching on FPGAs [30,

34], GPUs [32], and CELL [28]. These approaches all par-

allelize regular expression matching by running multiple

inputs in parallel on each hardware context. For example,

Scarpazza et al. uses builds a Flex like tokenizer to tokenize

SGML. In contrast, our approach is data parallel within a

single input and is complementary to these approaches.

Parallelizing Huffman Decoding Like the speculative ap-

proaches mentioned above, researchers have used specula-

tion to speed up Huffman decoding in software [14] and in

hardware [17, 33]. Klein et al. [14] parallelize Huffman de-

coding using the observation that decoding at different off-

sets are likely to synchronize after reading a few symbols.

Such synchronization is not always guaranteed for certain

codes—fixed length encodings, for instance. Convergence

of finite state machines strictly generalizes synchronization

and uniformly works for all codes. Others [5] have observed

that if the compression algorithm is modified to generate in-

dependent compressed blocks, each of these blocks can be

decompressed in parallel.

8. Conclusion

This paper demonstrates an efficient parallel algorithm finite

state machines that uses enumerative computations. While

an enumerative computation strictly performs more work

than a sequential one, we demonstrate optimizations and im-

plementation strategies, which in concert allow many of the

FSMs we evaluate in this paper to take advantage of fine-

grained parallelism (e.g., ILP/SIMD) and coarse-grained

parallelism (e.g., multi-core).

We show significant multi-factor performance improve-

ments on three real world problems, regular expressions

from Snort, Huffman decoding, and HTML tokenization.

This paper mainly focuses on parallelism found in a mod-

ern workstation; however, we believe our approach is suit-

able for any modern data parallel architecture, from GPUs to

large clusters running MapReduce like frameworks. We also

believe that future FSM compilers will be able to automati-

cally explore the various tradeoffs described in the paper to

obtain fast implementations for a given hardware architec-

ture.
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