Loading...
AutoGen: White icons representing (from left to right) agents (multi), workflow, tasks, and coding on a blue to purple to pink gradient background.
Microsoft Research Blog

Introducing AutoGen Studio: A low-code interface for building multi-agent workflows 

June 17, 2024 | Victor Dibia, Gagan Bansal, Jingya Chen, Suff Syed, Adam Fourney, Erkang (Eric) Zhu, Chi Wang, and Saleema Amershi

AutoGen Studio, built on Microsoft’s flexible open-source AutoGen framework for orchestrating AI agents, provides an intuitive user-friendly interface that enables developers to rapidly build, test, customize, and share multi-agent AI solutions—with little or no coding.

Articles

Microsoft Research Forum第三期:具有全球包容性与公平性的AI及新应用 

June 13, 2024

编者按:近日,微软研究院上线了面向全球研究界的全新线上系列活动 Microsoft Research Forum,旨在共同探讨人工智能时代的最新研究进展、大胆新颖的想法以及全球研究界关注的重要议题。来自微软研究院全球各地的研究人员将分享他们的研究洞见,并与大家进行在线讨论,希望碰撞出更多新的思想火花。 在最新一期的 Microsoft Research Forum 中,来自微软研究院不同实验室的研...

Microsoft Research Podcast | Ideas | Behnaz Arzani
Microsoft Research Podcast

Ideas: Solving network management puzzles with Behnaz Arzani 

June 13, 2024 | Gretchen Huizinga and Behnaz Arzani

Behnaz Arzani loves hard problems and the freedom to explore. That makes research a great fit! She discusses her work in network management, including the potential role of LLMs in the field; the challenges that excite her; and how storytelling…

In the news | The JoongAng

Microsoft’s secret weapon – research leader Peter Lee 

June 13, 2024

Peter Lee, president of Microsoft Research, is a leading force in Microsoft's leap forward in the era of generative AI.

Research Focus: June 10, 2024
Microsoft Research Blog

Research Focus: Week of June 10, 2024 

June 12, 2024

In this issue: RELEVANCE automatically evaluates creative LLM responses; Recyclable vitrimer-based printed circuit boards; Lean Attention: Hardware-aware scalable attention mechanism; WaveCoder: a fine-tuned code LLM; New AutoGen training course.

SIGMOD/PODS 2024 logo to the left of the first page of accepted paper, "SIBYL: Forecasting Time-Evolving Query Workloads"
Microsoft Research Blog

SIBYL: A machine learning-based framework for forecasting dynamic workloads 

June 11, 2024 | Rana Alotaibi, Hanxian Huang, Tarique Siddiqui, Carlo Curino, Jesús Camacho Rodríguez, and Yuanyuan Tian

SIBYL is a machine learning model that makes highly accurate predictions of database queries, enabling tuning for more efficiency. Applying traditional database optimizations to these predicted queries helps maintain high performance as demands change.

In the news | BBC Technology of Business

‘Insane’ amounts of data spurs new storage tech 

June 11, 2024

Project Silica uses powerful lasers to enable a piece of glass about the size of a DVD to store more than seven terabytes of data, helping to manage the rapidly growing supply.

SIGMOD PODS 2024 logo to the left of the first page of "LST-Bench: Benchmarking Log-Structured Tables in the Cloud"
Microsoft Research Blog

LST-Bench: A new benchmark tool for open table formats in the data lake 

June 10, 2024 | Jesús Camacho Rodríguez, Ashvin Agrawal, Anja Gruenheid, Ashit Gosalia, Cristian Petculescu, Josep Aguilar-Saborit, Avrilia Floratou, Carlo Curino, and Raghu Ramakrishnan

LST-Bench is a new open-source benchmark designed to evaluate table formats in cloud environments. It extends existing benchmarks to better reflect real-world usage & performance of data lakes and easily integrates with commonly used analytical engines.

Articles

对话Nature子刊论文作者:DiG如何揭示蛋白质秘密 

June 7, 2024

作者:科学智能中心 编者按:尽管当前利用人工智能技术预测生物分子结构的模型已经可以精确预测包括蛋白质、核酸、小分子、离子和修饰残基在内的复合物结构,但对于科学家们来说仅了解分子的微观结构还远远不够,因为分子的宏观属性和功能往往取决于分子结构在平衡态下的分布。 用于分子结构平衡分布预测的深度学习框架 Distributional Graphormer(DiG)的最新论文,近期在《自然-机器智能》(N...

  • Previous
  • 1
  • …
  • 67
  • 68
  • 69
  • 70
  • 71
  • …
  • 570
  • Next