background pattern

AgentGuard: Early-Warning and Routing for Predictable Agentic
AI on Azure

This project introduces AgentGuard, a monitoring and routing system designed to improve reliability and cost-efficiency in Azure-based agent workflows. By analysing early trajectory signals—such as reasoning patterns and tool usage—within the first 10–30% of an agent’s execution, AgentGuard predicts task outcomes and dynamically halts or re-routes agents to prevent failures. Calibrated with ADeLe for demand-aware evaluation, the system aims to optimise the Reliability–Latency–Cost frontier across diverse benchmarks, including software engineering and cybersecurity tasks. Expected outcomes include integrated Azure routing capabilities, diagnostic insights into team composition (optimized on agent psychometrics, collective agent behavior/ intelligence, neural evolutions, and evolutionary dynamics), and practical strategies for building more predictable, trustworthy agentic AI.

인원

Wataru  Toyokawa의 초상화

Wataru Toyokawa

Unit Leader Computational Group Dynamics

Riken Center for Brain Science

Jiang Chen의 초상화

Jiang Chen

Researcher

Universitat Politècnica de València

David Gomez-Anton의 초상화

David Gomez-Anton

Research Collaborator

Universitat Politècnica de València

José  Hernández-Orallo의 초상화

José Hernández-Orallo

Professor

Universitat Politècnica de València

Kazuya Horibe의 초상화

Kazuya Horibe

Special Postdoctoral Researcher

Riken Center for Brain Science

Kexin  Jiang-Chen의 초상화

Kexin Jiang-Chen

Researcher

Universitat Politècnica de València

Haotian Li의 초상화

Haotian Li

Researcher

Yael Moros Daval의 초상화

Yael Moros Daval

PhD Student

Universitat Politècnica de València

Peter Romero의 초상화

Peter Romero

Researcher / Scientist

Universitat Politècnica de València

Daniel Romero-Alvarado의 초상화

Daniel Romero-Alvarado

PhD Student

Universitat Politècnica de València

Beibei Shi의 초상화

Beibei Shi

Principal Research PM

Xing Xie의 초상화

Xing Xie

Assistant Managing Director