NormalTouch and TextureTouch: High-fidelity 3D Haptic Shape Rendering on Handheld Virtual Reality Controllers

  • Hrvoje Benko ,
  • Christian Holz ,
  • Mike Sinclair ,
  • Eyal Ofek

Proceedings of UIST '16 |

Published by ACM

Publication

We present an investigation of mechanically-actuated hand­held controllers that render the shape of virtual objects through physical shape displacement, enabling users to feel 3D surfaces, textures, and forces that match the visual rendering. We demonstrate two such controllers, NormalTouch and TextureTouch. Both controllers are tracked with 6 DOF and produce spatially-registered haptic feedback to a user’s finger. NormalTouch haptically renders object surfaces and provides force feedback using a tiltable and extrudable platform. TextureTouch renders the shape of virtual objects including detailed surface structure through a 4×4 matrix of actuated pins. By moving our controllers around in space while keeping their finger on the actuated platform, users obtain the impression of a much larger 3D shape by cognitively integrating output sensations over time. Our evaluation compares the effectiveness of our controllers with the two de-facto standards in Virtual Reality controllers: device vibration and visual feedback only. We find that haptic feedback significantly increases the accuracy of VR interaction, most effectively by rendering high-fidelity shape output as in the case of our controllers. Participants also generally found NormalTouch and TextureTouch realistic in conveying the sense of touch for a variety of 3D objects.

NormalTouch and TextureTouch: 3D Haptic Shape Controllers for Virtual Reality

NormalTouch and TextureTouch are mechanically-actuated handheld controllers that render the shape of virtual objects through physical shape displacement, enabling users to feel 3D surfaces, textures, and forces that match the visual rendering. Both controllers are tracked with 6 DOF and produce spatially-registered haptic feedback to a user’s finger. NormalTouch haptically renders object surfaces and provides force feedback using a tiltable and extrudable platform. TextureTouch renders the shape of virtual objects including detailed surface structure through a 4×4 matrix of actuated pins. By moving our controllers around in space while keeping their finger on the actuated platform, users obtain the impression of a much larger 3D shape by cognitively integrating output sensations over time.

Haptic PIVOT: On-Demand Handhelds in VR

We present PIVOT, a wrist-worn haptic device that renders virtual objects into the user’s hand on demand. Its simple design comprises a single actuated joint that pivots a haptic handle into and out of the user’s hand, rendering the haptic sensations of grasping, catching, or throwing an object – anywhere in space. Unlike existing hand-held haptic devices and haptic gloves, PIVOT leaves the user’s palm free when not in use, allowing users to make unencumbered use of their hand. PIVOT also enables rendering forces acting on the held virtual objects, such as gravity, inertia, or air-drag, by actively driving its motor while the user is firmly holding the handle. When wearing a PIVOT device on both hands, they can add haptic feedback to bimanual interaction,…