Harmonic Spinors on Homogeneous Spaces
- Gregory D. Landweber
Let G be a compact, semi-simple Lie group and H a maximal rank reductive subgroup. The irreducible representations of G can be constructed as spaces of harmonic spinors with respect to a Dirac operator on the homogeneous space G/H twisted by bundles associated to the irreducible, possibly projective, representations of H. Here, we give a quick proof of this result, computing the index and kernal of this twisted Dirac operator using a homogeneous version of the Weyl character formula noted by Gross, Kostant, Ramond, and Sternberg, as well as recent work of Kostant regarding an algebraic version of this Dirac operator.