Learning grasp stability

  • Hao Dang ,
  • Peter K. Allen

Robotics and Automation (ICRA), 2012 IEEE International Conference on |

We deal with the problem of blind grasping where we use tactile feedback to predict the stability of a robotic grasp given no visual or geometric information about the object being grasped. We first simulated tactile feedback using a soft finger contact model in GraspIt! [1] and computed tactile contacts of thousands of grasps with a robotic hand using the Columbia Grasp Database [2]. We used the K-means clustering method to learn a contact dictionary from the tactile contacts, which is a codebook that models the contact space. The feature vector for a grasp is a histogram computed based on the distribution of its contacts over the contact space defined by the dictionary. An SVM is then trained to predict the stability of a robotic grasp given this feature vector. Experiments indicate that this model which requires low-dimension feature input is useful in predicting the stability of a grasp.