A New View of Automatic Relevance Determination

  • David Wipf ,
  • Srikantan Nagarajan

Advances in Neural Information Processing Systems 20, MIT Press, 2008 |

Automatic relevance determination (ARD) and the closely-related sparse Bayesian learning (SBL) framework are effective tools for pruning large numbers of irrelevant features leading to a sparse explanatory subset. However, popular update rules used for ARD are either difficult to extend to more general problems of interest or are characterized by non-ideal convergence properties. Moreover, it remains unclear exactly how ARD relates to more traditional MAP estimation-based methods for learning sparse representations (e.g., the Lasso). This paper furnishes an alternative means of expressing the ARD cost function using auxiliary functions that naturally addresses both of these issues. First, the proposed reformulation of ARD can naturally be optimized by solving a series of re-weighted `1 problems. The result is an efficient, extensible algorithm that can be implemented using standard convex programming toolboxes and is guaranteed to converge to a local minimum (or saddle point). Secondly, the analysis reveals that ARD is exactly equivalent to performing standard MAP estimation in weight space using a particular feature- and noise-dependent, non-factorial weight prior. We then demonstrate that this implicit prior maintains several desirable advantages over conventional priors with respect to feature selection. Overall these results suggest alternative cost functions and update proceduresfor selecting features and promoting sparse solutions in a variety of general situations. In particular, the methodology readily extends to handle problems such as non-negative sparse coding and covariance component estimation.