One-Dependent Coloring by Finitary Factors
Holroyd and Liggett recently proved the existence of a stationary 1-dependent 4-coloring of the integers, the first stationary k-dependent q-coloring for any k and q. That proof specifies a consistent family of finite-dimensional distributions, but does not yield a probabilistic construction on the whole integer line. Here we prove that the process can be expressed as a finitary factor of an i.i.d. process. The factor is described explicitly, and its coding radius obeys power-law tail bounds.