The Linear Time Hierarchy Theorems for Abstract State Machines and RAMs
- Andreas Blass ,
- Yuri Gurevich
Springer J. of Universal Computer Science | , pp. 247-278
Contrary to polynomial time, linear time badly depends on the computation model. In 1992, Neil Jones designed a couple of computation models where the linear-speed-up theorem fails and linear-time computable functions form a proper hierarchy. However, the linear time of Jones’ models is too restrictive. We prove linear-time hierarchy theorems for random access machines and Gurevich abstract state machines (formerly evolving algebras). The latter generalization is harder and more important because of the greater flexibility of the ASM model. One long-term goal of this line of research is to prove linear lower bounds for linear time problems.