Matrix Transformation is Complete for the Average Case

  • Andreas Blass ,
  • Yuri Gurevich

SIAM J. on Computing |

This is a full paper corresponding to the extended abstract [88] by the second author. We present the first algebraic problem complete for the average case under a natural probability distribution. The problem is this: Given a unimodular matrix X of integers, a set S of linear transformations of such unimodular matrices and a natural number n, decide if there is a product of at most n (not necessarily different) members of S that takes X to the identity matrix.