Multi-Hot Compact Network Embedding
- Chaozhuo Li ,
- Zheng Lei ,
- Senzhang Wang ,
- Feiran Huang ,
- Philip S. Yu ,
- Zhoujun Li
CIKM |
Network embedding, as a promising way of the network representation learning, is capable of supporting various subsequent network mining and analysis tasks, and has attracted growing research interests recently. Traditional approaches assign each node with an independent continuous vector, which will cause memory overhead for large networks. In this paper we propose a novel multi-hot compact network embedding framework to effectively reduce memory cost by learning partially shared embeddings. The insight is that a node embedding vector is composed of several basis vectors according to a multi-hot index vector. The basis vectors are shared by different nodes, which can significantly reduce the number of continuous vectors while maintain similar data representation ability. Specifically, we propose a MCNE$_p $ model to learn compact embeddings from pre-learned node features. A novel component named compressor is integrated into MCNE$_p $ to tackle the challenge that popular back-propagation optimization cannot propagate loss through discrete samples. We further propose an end-to-end model MCNE$_t $ to learn compact embeddings from the input network directly. Empirically, we evaluate the proposed models over four real network datasets, and the results demonstrate that our proposals can save about 90% of memory cost of network embeddings without significantly performance decline.