A Unified Semantics and Feature Based Image Retrieval Technique Using Relevance Feedback
- Hong-Jiang Zhang ,
- Chunhui Hu Hu ,
- Qiang Yang ,
- Xinquan Zhu Zhu ,
- Ye Lu
Published by Association for Computing Machinery, Inc.
The relevance feedback approach to image retrieval is a powerful technique and has been an active research direction for the past few years. Various ad hoc parameter estimation techniques have been proposed for relevance feedback. In addition, methods that perform optimization on multi-level image content model have been formulated. However, these methods only perform relevance feedback on the low-level image features and fail to address the images’ semantic content. In this paper, we propose a relevance feedback technique, iFind, to take advantage of the semantic contents of the images in addition to the low-level features. By forming a semantic network on top of the keyword association on the images, we are able to accurately deduce and utilize the images’ semantic contents for retrieval purposes. The accuracy and effectiveness of our method is demonstrated with experimental results on real-world image collections.
Copyright © 2000 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library -http://www.acm.org/dl/.