Abstract

We consider the problem of automatically and efficiently computing models of constraints, in the presence of complex background theories such as floating-point arithmetic. Constructing models, or proving that a constraint is unsatisfiable, has various applications, for instance for automatic generation of test inputs. It is well-known that a naïve encoding of constraints into simpler theories (for instance, bit-vectors or propositional logic) often leads to a drastic increase in size, or that it is unsatisfactory in terms of the resulting space and runtime demands. We define a framework for systematic application of approximations in order to improve performance. Our method is more general than previous techniques in the sense that approximations that are neither under- nor over-approximations can be used, and it shows promising performance on practically relevant benchmark problems.