Automated partitioning design in parallel database systems

  • Rimma Nehme
  • Nicolas Bruno

International Conference on Management of Data |

Published by ACM

Download PDF | Download PDF | View Publication | View Publication | View Publication

In recent years, Massively Parallel Processors (MPPs) have gained ground enabling vast amounts of data processing. In such environments, data is partitioned across multiple compute nodes, which results in dramatic performance improvements during parallel query execution. To evaluate certain relational operators in a query correctly, data sometimes needs to be re-partitioned (i.e., moved) across compute nodes. Since data movement operations are much more expensive than relational operations, it is crucial to design a suitable data partitioning strategy that minimizes the cost of such expensive data transfers. A good partitioning strategy strongly depends on how the parallel system would be used. In this paper we present a partitioning advisor that recommends the best partitioning design for an expected workload. Our tool recommends which tables should be replicated (i.e., copied into every compute node) and which ones should be distributed according to specific column(s) so that the cost of evaluating similar workloads is minimized. In contrast to previous work, our techniques are deeply integrated with the underlying parallel query optimizer, which results in more accurate recommendations in a shorter amount of time. Our experimental evaluation using a real MPP system, Microsoft SQL Server 2008 Parallel Data Warehouse, with both real and synthetic workloads shows the effectiveness of the proposed techniques and the importance of deep integration of the partitioning advisor with the underlying query optimizer.