Finite-State Code Generation
This paper describes GBURG, which generates tiny, fast code generators based on finite-state machine pattern matching. The code generators translate postfix intermediate code into machine instructions in one pass (except, of course, for backpatching addresses). A stack-based virtual machine-known as the Lean Virtual Machine (LVM)-tuned for fast code generation is also described. GBURG translates the two-page LVEVI-to-x36 specification into a code generator that fits entirely in an 8 KB I-cache and that emits x86 code at 8.6 MB/sec on a 266-MHz P6. Our just-in-time code generator translates and executes small benchmarks at speeds within a factor of two of executables derived from the conventional compile-time code generator on which it is based.
Copyright © 1999 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library -http://www.acm.org/dl/.