Geolife GPS trajectory dataset – User Guide

Yu Zheng, Hao Fu, Xing Xie, Wei-Ying Ma, Quannan Li

| Geolife GPS trajectories 1.1 edition

Geolife GPS trajectories 1.1

This GPS trajectory dataset was collected in (Microsoft Research Asia) Geolife project by 178 users in a period of over four years (from April 2007 to October 2011). A GPS trajectory of this dataset is represented by a sequence of time-stamped points, each of which contains the information of latitude, longitude and altitude. This dataset contains 17,621 trajectories with a total distance of 1,251,654 kilometers and a total duration of 48,203 hours. These trajectories were recorded by different GPS loggers and GPS-phones, and have a variety of sampling rates. 91 percent of the trajectories are logged in a dense representation, e.g. every 1~5 seconds or every 5~10 meters per point.

This dataset recoded a broad range of users’ outdoor movements, including not only life routines like go home and go to work but also some entertainments and sports activities, such as shopping, sightseeing, dining, hiking, and cycling. This trajectory dataset can be used in many research fields, such as mobility pattern mining, user activity recognition, location-based social networks, location privacy, and location recommendation.

Download Trajectories

Publication Downloads

GeoLife GPS Trajectories

August 9, 2012

This is a GPS trajectory dataset collected in (Microsoft Research Asia) GeoLife project by 182 users in a period of over two years (from April 2007 to August 2012). This trajectory dataset can be used in many research fields, such as mobility pattern mining, user activity recognition, location-based social networks, location privacy, and location recommendation. The following heat maps visualize its distribution in Beijing. Please cite the following two papers when using this dataset. [1] Yu Zheng, Quannan Li, Yukun Chen, Xing Xie. Understanding Mobility Based on GPS Data. In Proceedings of ACM conference on Ubiquitous Computing (UbiComp 2008), Seoul, Korea. ACM Press: 312-321. [2] Yu Zheng, Lizhu Zhang, Xing Xie, Wei-Ying Ma. Mining interesting locations and travel sequences from GPS trajectories. In Proceedings of International conference on World Wild Web (WWW 2009), Madrid Spain. ACM Press: 791-800.

Download Data