Large-Scale Spectral Clustering on Graphs
- Jialu Liu ,
- Chi Wang ,
- Marina Danilevsky ,
- Jiawei Han
Proceeding of 2013 International Joint Conference on Artifcial Intelligence |
Published by Elsevier
Graph clustering has received growing attention in recent years as an important analytical technique, both due to the prevalence of graph data, and the usefulness of graph structures for exploiting intrinsic data characteristics. However, as graph data grows in scale, it becomes increasingly more challenging to identify clusters. In this paper we propose an efficient clustering algorithm for largescale graph data using spectral methods. The key idea is to repeatedly generate a small number of “supernodes” connected to the regular nodes, in order to compress the original graph into a sparse bipartite graph. By clustering the bipartite graph using spectral methods, we are able to greatly improve efficiency without losing considerable clustering power. Extensive experiments show the effectiveness and efficiency of our approach.
NOTICE: this is the author’s version of a work that was accepted for publication. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published at http://www.elsevier.com/.