Predicting RNA Secondary Structures with Arbitrary Pseudoknots by Maximizing the Number of Stacking Pairs

  • Samuel Ieong ,
  • Ming-Yang Kao ,
  • Tak-Wah Lam ,
  • Wing-Kin Sung ,
  • Siu-Ming Yiu

Journal of Computational Biology |

Conference version appeared in BIBE 2001

The paper investigates the computational problem of predicting RNA secondary structures. The general belief is that allowing pseudoknots makes the problem hard. Existing polynomial-time algorithms are heuristic algorithms with no performance guarantee and can handle only limited types of pseudoknots. In this paper, we initiate the study of predicting RNA secondary structures with a maximum number of stacking pairs while allowing arbitrary pseudoknots. We obtain two approximation algorithms with worst-case approximation ratios of 1/2 and 1/3 for planar and general secondary structures, respectively. For an RNA sequence of n bases, the approximation algorithm for planar secondary structures runs in O(n3) time while that for the general case runs in linear time. Furthermore, we prove that allowing pseudoknots makes it NP-hard to maximize the number of stacking pairs in a planar secondary structure. This result is in contrast with the recent NP-hard results on pseudoknots which are based on optimizing some general and complicated energy functions.