We present a constraint-based method for proving conditional termination of integer programs. Building on this, we construct a framework to prove (unconditional) program termination using a powerful mechanism to combine conditional termination proofs. Our key insight is that a conditional termination proof shows termination for a subset of program execution states which do not need to be considered in the remaining analysis. This facilitates more effective termination as well as non-termination analyses, and allows handling loops with different execution phases naturally. Moreover, our method can deal with sequences of loops compositionally. In an empirical evaluation, we show that our implementation VeryMax outperforms state-of-the-art tools on a range of
standard benchmarks.