Random Walks On Dynamical Percolation: Mixing Times, Mean Squared Displacement And Hitting Times

  • Yuval Peres ,
  • Alexandre Stauffer ,
  • Jeffrey E. Steif

|

Publication

We study the behavior of random walk on dynamical percolation. In this model, the edges of a graph G are either open or closed and refresh their status at rate \mu\ while at the same time a random walker moves on G at rate 1 but only along edges which are open. On the d-dimensional torus with side length n, we prove that in the subcritical regime, the mixing times for both the full system and the random walker are n^2/\mu\ up to constants. We also obtain results concerning mean squared displacement and hitting times. Finally, we show that the usual recurrence transience dichotomy for the lattice Z^d holds for this model as well.