The success of an intelligent robotic system depends on the performance of its vision-system which in turn depends to a great extend upon the quality of its calibration. During the execution of a task the vision-system is subject to external influences such as vibrations, thermal expansion etc. which affect and possibly render invalid the initial calibration. Moreover, it is possible that the parameters of the vision-system like e.g. the zoom or the focus are altered intentionally in order to perform specific vision-tasks. This paper describes a technique for automatically maintaining calibration of stereovision systems over time without using again any particular calibration apparatus. It uses all available information, i.e. both spatial and temporal data. Uncertainty is systematically manipulated and maintained. Synthetical and real data are used to validate the proposed technique, and the results compare very favourably with those given by classical calibration methods.