Biointerfaced Nanodevices

  • Michael McAlpine | Princeton

The development of a method for interfacing high performance devices with flexible, stretchable, and biocompatible materials could yield breakthroughs in implantable or wearable systems. Yet, most high quality materials are hard or rigid in nature, and the crystallization of these materials generally requires high temperatures for maximally efficient performance. These properties render the corresponding devices incompatible with temperature-sensitive soft materials such as plastic, rubber, and tissue. Nanotechnology provides a route for overcoming these dichotomies, by altering the mechanics of materials while simultaneously improving their performance. In this talk, I will focus on two vital areas for interfacing nanodevices with soft materials: 1) graphene nanosensors for bacteria detection, and 2) piezoelectric PZT nanoribbons for bioelectromechanical sensing. Our approach in both cases involves the following key steps: first, nanomaterial synthesis or fabrication; second, fundamental studies of the effect of scaling on nanomaterial properties; third, integration into high performance devices; and finally, interfacing these materials with soft substrates. The enhanced performance of nanomaterials coupled with “living” platforms may enable exciting avenues in fundamental research and novel applications, including on-body threat detection and energy harvesting.

Speaker Details

Michael McAlpine began his appointment as Assistant Professor of Mechanical Engineering at Princeton in 2008 and is an associated faculty member with the Department of Chemistry and the Princeton Institute for the Science and Technology of Materials (PRISM). He received a B.S. in Chemistry with honors from Brown University in 2000 and a Ph.D. in Chemistry from Harvard University in 2006. His research has focused on nanotechnology-enabled approaches to hybridize high performance inorganic materials with flexible organics, for fundamental investigations in the biological and energy sciences. He has received a number of awards, most prominently a TR35 Young Innovator Award, an Air Force Young Investigator Award, an Intelligence Community Young Investigator Award, a DuPont Young Investigator Award, a DARPA Young Faculty Award, and an American Asthma Foundation Early Excellence Award.

    • Portrait of Jeff Running

      Jeff Running