Real-Time Face Reconstruction from a Single Depth Image
- Pushmeet Kohli, Microsoft
This paper contributes a real time method for recovering facial shape and expression from a single depth image. The method also estimates an accurate and dense correspondence field between the input depth image and a generic face model. Both outputs are a result of minimizing the error in reconstructing the depth image, achieved by applying a set of identity and expression blend shapes to the model. Traditionally, such a generative approach has shown to be computationally expensive and non-robust because of the non-linear nature of the reconstruction error. To overcome this problem, we use a discriminatively trained prediction pipeline that employs random forests to generate an initial dense but noisy correspondence field. Our method then exploits a fast ICP-like approximation to update these correspondences, allowing us to quickly obtain a robust initial fit of our model. The model parameters are then fine tuned to minimize the true reconstruction error using a stochastic optimization technique. The correspondence field resulting from our hybrid generative-discriminative pipeline is accurate and useful for a variety of applications such as mesh deformation and retexturing. Our method works in real-time on a single depth image i.e. without temporal tracking, is free from per-user calibration, and works in low-light conditions.
-
-
Pushmeet Kohli
Principal Research Manager Director of Research Microsoft Research
-
-
Watch Next
-
-
VoluMe: Authentic 3D Video Calls from Live Gaussian Splat Prediction
- Antonio Criminisi,
- Charlie Hewitt,
- Marek Kowalski (HE/HIM)
-
-