Self-avoiding walks on the honeycomb lattice
- Hugo Duminil-Copin | University of Geneva
We will present the proof of a conjecture of B. Nienhuis on the number of
self-avoiding walks on the honeycomb lattice. More precisely, we will prove
that the connective constant of the lattice equals the square root of (2+√2).
This theorem is the first step towards a deeper understanding of self-avoiding walks. We
will state some conjectures on the scaling-limit behavior of these walks.
Speaker Details
Hugo Duminil-Copin is a graduate student at the University of Geneva, working with Stas Smirnov on planar models in statistical physics.
-
-
Jeff Running
-
Watch Next
-
-
-
-
-
-
Accelerating MRI image reconstruction with Tyger
- Karen Easterbrook,
- Ilyana Rosenberg
-
-
-
From Microfarms to the Moon: A Teen Innovator’s Journey in Robotics
- Pranav Kumar Redlapalli
-