Logarithmic fluctuations from circularity
- Lionel Levine | Cornell
Starting with n particles at the origin in Zd, let each particle in turn perform simple random walk until reaching an unoccupied site. Lawler, Bramson and Griffeath proved that with high probability the resulting random set of n occupied sites is close to a ball. We show that its fluctuations from circularity are, with high probability, at most logarithmic in the radius of the ball, answering a question posed by Lawler in 1995 and confirming a prediction made by chemists Meakin and Deutch in the 1980’s. Joint work with David Jerison and Scott Sheffield.
Speaker Details
Lionel Levine is an Assistant Professor at Cornell. He obtained his PhD from UC Berkeley in 2008, and was a postdoctoral Researcher at MIT.
-
-
Jeff Running
-
Series: Microsoft Research Talks
-
Decoding the Human Brain – A Neurosurgeon’s Experience
- Dr. Pascal O. Zinn
-
-
-
-
-
-
Challenges in Evolving a Successful Database Product (SQL Server) to a Cloud Service (SQL Azure)
- Hanuma Kodavalla,
- Phil Bernstein
-
Improving text prediction accuracy using neurophysiology
- Sophia Mehdizadeh
-
Tongue-Gesture Recognition in Head-Mounted Displays
- Tan Gemicioglu
-
DIABLo: a Deep Individual-Agnostic Binaural Localizer
- Shoken Kaneko
-
-
-
-
Audio-based Toxic Language Detection
- Midia Yousefi
-
-
From SqueezeNet to SqueezeBERT: Developing Efficient Deep Neural Networks
- Forrest Iandola,
- Sujeeth Bharadwaj
-
Hope Speech and Help Speech: Surfacing Positivity Amidst Hate
- Ashique Khudabukhsh
-
-
-
Towards Mainstream Brain-Computer Interfaces (BCIs)
- Brendan Allison
-
-
-
-
Learning Structured Models for Safe Robot Control
- Subramanian Ramamoorthy
-