Can Cascades be Predicted?
- Jure Leskovec, Stanford University; Paul Bennett, Microsoft
Social networks play a central role in spreading of information, ideas, behaviors, and products. As such “contagions” diffuse from a person to person they may go “viral,” and large cascades can form. However, a growing body of research has argued that virality and cascades may be inherently unpredictable. Thus, one of the central questions is whether information cascades can be predicted and possibly even engineered. In this talk, I will discuss a framework for predicting cascades and making them go viral. We study large sample of cascades on Facebook and find strong performance in predicting whether a cascade will continue to grow in the future. The models we develop help us understand how to create viral social media content: by using the right title, for the right community, at the right time.
Speaker Details
Jure Leskovec http://cs.stanford.edu/~jure is assistant professor of Computer Science at Stanford University. His research focuses on mining large social and information networks. Problems he investigates are motivated by large scale data, the Web and on-line media. This research has won several awards including a Microsoft Research Faculty Fellowship, the Alfred P. Sloan Fellowship and numerous best paper awards. Leskovec received his bachelor’s degree in computer science from University of Ljubljana, Slovenia, and his PhD in in machine learning from the Carnegie Mellon University and postdoctoral training at Cornell University. You can follow him on Twitter @jure http://www.x.com/jure
-
-
Jure Leskovec
Professor of Computer Science
Stanford University
-
Paul Bennett
Partner Research Manager
-
-
Series: Microsoft Research Talks
-
Decoding the Human Brain – A Neurosurgeon’s Experience
- Dr. Pascal O. Zinn
-
-
-
-
-
-
Challenges in Evolving a Successful Database Product (SQL Server) to a Cloud Service (SQL Azure)
- Hanuma Kodavalla,
- Phil Bernstein
-
Improving text prediction accuracy using neurophysiology
- Sophia Mehdizadeh
-
Tongue-Gesture Recognition in Head-Mounted Displays
- Tan Gemicioglu
-
DIABLo: a Deep Individual-Agnostic Binaural Localizer
- Shoken Kaneko
-
-
-
-
Audio-based Toxic Language Detection
- Midia Yousefi
-
-
From SqueezeNet to SqueezeBERT: Developing Efficient Deep Neural Networks
- Forrest Iandola,
- Sujeeth Bharadwaj
-
Hope Speech and Help Speech: Surfacing Positivity Amidst Hate
- Ashique Khudabukhsh
-
-
-
Towards Mainstream Brain-Computer Interfaces (BCIs)
- Brendan Allison
-
-
-
-
Learning Structured Models for Safe Robot Control
- Subramanian Ramamoorthy
-