Recent Advances in Unsupervised Image-to-Image Translation
- Xun Huang | Cornell University
Unsupervised image-to-image translation aims to map an image drawn from one distribution to an analogous image in a different distribution, without seeing any example pairs of analogous images. For example, given an image of a landscape taken in the summer, one may want to know what it would look like in the winter. There is not just a single answer. One could imagine many possibilities due to differences in weather, timing, lighting, etc. However, existing work can only deterministically produce a single output given the same input. To address this limitation, we propose a Multimodal Unsupervised Image-to-image Translation (MUNIT) framework that is able to produce diverse and realistic translation results. We further extend our model to the few-shot scenario, where only a few images in the target distribution are available and only at test time. This model, named FUNIT, is trained to translate images between many different pairs of distributions using a few examples so that it can be generalized to unseen target distributions. Extensive experimental comparisons demonstrate the effectiveness of the proposed frameworks.
[Slides]
-
-
Pengchuan Zhang
Senior Researcher
-
-
Series: Microsoft Research Talks
-
Decoding the Human Brain – A Neurosurgeon’s Experience
- Dr. Pascal O. Zinn
-
-
-
-
-
-
Challenges in Evolving a Successful Database Product (SQL Server) to a Cloud Service (SQL Azure)
- Hanuma Kodavalla,
- Phil Bernstein
-
Improving text prediction accuracy using neurophysiology
- Sophia Mehdizadeh
-
Tongue-Gesture Recognition in Head-Mounted Displays
- Tan Gemicioglu
-
DIABLo: a Deep Individual-Agnostic Binaural Localizer
- Shoken Kaneko
-
-
-
-
Audio-based Toxic Language Detection
- Midia Yousefi
-
-
From SqueezeNet to SqueezeBERT: Developing Efficient Deep Neural Networks
- Forrest Iandola,
- Sujeeth Bharadwaj
-
Hope Speech and Help Speech: Surfacing Positivity Amidst Hate
- Ashique Khudabukhsh
-
-
-
Towards Mainstream Brain-Computer Interfaces (BCIs)
- Brendan Allison
-
-
-
-
Learning Structured Models for Safe Robot Control
- Subramanian Ramamoorthy
-