Microsoft Research Blog

Microsoft Research Blog

The Microsoft Research blog provides in-depth views and perspectives from our researchers, scientists and engineers, plus information about noteworthy events and conferences, scholarships, and fellowships designed for academic and scientific communities.

The future of productivity: People and tools that grow together

July 17, 2019 | By Jaime Teevan, Chief Scientist

Computers are disappearing.

This doesn’t mean they’re actually going away, though. In fact, every day more and more of how we live, work, and interact is transformed by computers. But it does mean that technology has become so ubiquitous in recent years that our focus can now shift from our computers to what they enable us to do.

Because computing is increasingly embedded in the world around us, it’s starting to help us in new contexts and new ways. Where once we relied on a mouse and keyboard to provide input, today we have video, speech, and gesture. Information has become accessible from anywhere, at any time, across multiple devices. My phone vibrates in my pocket to let me know there’s something I should attend to. My smart speaker answers questions I have. My camera converts printed tables into content I can manage in a spreadsheet.

The amount of data being produced by these new interaction modalities is so vast that performing procedural computation over it is often no longer feasible. All of this information must instead be synthesized by drawing on human and artificial intelligence. As a result, learning is becoming a fundamental part of accomplishing things. At Microsoft, this means the tools we build must get better the more they are used—and help people get better the more they use them, too.

Understanding how people and their tools can grow together to get things done is the goal of this year’s Microsoft Research Faculty Summit: The future of work and the driving force behind the $1 million Microsoft Productivity Research (MPR) RFP, unveiled at the summit today. With this RFP, we’re excited to partner with the academic community in shaping the future of productivity in four key areas: interaction and sensing; machine learning and machine teaching; attention and engagement; and collaboration and human learning.

Interaction and sensing

Traditionally, productivity tools have given people detailed control of their digital artifacts, enabling them to edit text one character at a time, specify formatting particulars, and perform individual calculations. Increasingly, however, people are starting to shift their focus from the details of their digital artifacts to what they’re trying to do as their tools become more adaptable to how and where they work. To support this shift, productivity tools must emphasize natural human-computer collaboration by capturing intent: A person describes what they want, the tool produces an output, and the person responds. We’re starting to see this more interactive approach in tools such as PowerPoint Designer, which helps people determine how best to present their messages based on the content they provide. Pushing the boundaries of capabilities like this will require research into new interaction techniques and sensing approaches that extend computing beyond the desktop to meet people where they are.

Machine learning and machine teaching

While people’s interactions with productivity tools influence what they can accomplish now, they’re also starting to influence what people can accomplish later as their tools learn from each use. Every time an individual engages with a tool, that person provides feedback—often implicitly in the form of the content they produce and the way they interact with the system—that can be deployed to build better tools, which then leads to further engagement. Recent advances in machine learning have enabled these feedback loops to drive significant productivity gains, helping people write better, understand and use their data better, and focus their attention better. But additional research is required to develop trustworthy and secure machine learning approaches that learn from large datasets in a privacy-preserving manner. We also need a better understanding of how to actively engage people in improving their tools through machine teaching.

Attention and engagement

Although feedback loops rely on engagement, engagement is not the end goal—people’s success is. Unfortunately, the drive for engagement that feedback loops create has resulted in tools that impact our attention in unintended ways. Take our phones, for example. They weren’t built to capture our attention; they were built to connect us with other people. But as our phone applications have used our data to become more and more engaging, our phones have accidentally become something we can’t put down. New research is needed to understand how our tools influence the decisions we make and how we can place people at the center of the feedback loops these tools depend on. There’s an opportunity to help direct people’s attention toward the things that matter to them by reimagining the processes that have made us all addicted to our phones.

Collaboration and human learning

Feedback loops not only influence what people choose to do in the short term, but can also influence how people grow in the long term. Because artificial intelligence can scale human intelligence, helping people cultivate the unique insights they bring to the table will be increasingly important in the future. MyAnalytics, for example, can help people learn by providing them with a chance to reflect on how they use their productivity tools, and contextual just-in-time training can help them learn new skills as they need them. Organizations can also get better over time using their organizational data with Workplace Analytics and bring together the right people at the right time with tools like the Microsoft 365 freelance toolkit.

We’re in the middle of a profound shift in how people get things done. As computers continue to disappear into the background in ways that allow them to increasingly impact all of our activities, computational support for productivity must help people focus on what matters while enabling them and their tools to grow. But we don’t yet fully know the implications of this shift, and deep research and careful thought are needed to get it right. Microsoft is uniquely positioned to usher in the future of productivity, and we invite the academic community to join us in empowering people to achieve more.

2019 Microsoft Research Faculty Summit sessions discussing the future of work and productivity will be available on-demand in the upcoming weeks. The Microsoft Productivity Research RFP is open to accredited or otherwise degree-granting universities with non-profit status and research organizations with non-profit status. The deadline to apply is Oct. 16, 2019. For more information, visit the RFP home page.

Up Next

Artificial intelligence

Making the future of work work for you with Dr. Johannes Gehrke

Episode 83, July 17, 2019- Dr. Johannes Gehrke is a Microsoft Technical Fellow and head of Architecture and Machine Learning for the Intelligent Communications and Conversations Cloud in Microsoft’s Experiences and Devices division. But lest you think his lofty position makes him in any way superior to you, let me tell you, he knows who works for whom, and he’ll be the first to tell you that you are his boss! On today’s podcast, Dr. Gehrke frames the new, cloud-powered work world as a fast paced, widely-distributed workplace that demands real-time decision-making and collaboration – and explains how products like Microsoft Teams are meeting those demands – and tells us, both directly and indirectly, about the future of work, which for Microsoft, involves a pivot from an app-centric approach to a people-centric approach where, by using an AI-infused productivity suite coupled with the power of the cloud, we can essentially “hire Microsoft” to help us get our work done.

Microsoft blog editor

Artificial intelligence, Data platforms and analytics, Systems and networking

The story of an Office AI feature: How AI can promote efficient meeting preparation

Adam Troy had an idea. He was spending so much time searching through old emails and attachments to prepare for meetings: Could AI help him be better prepared for meetings? Could machine learning automatically identify the most relevant emails and documents he needed for his meetings? Troy, who works on a team that incubates projects […]

Microsoft blog editor

Artificial intelligence

Snippets from the Revolution – An Interview with Dr. Jaime Teevan

Episode 1, November 28, 2017 - Dr. Jaime Teevan has a lot to say about productivity in a fragmented culture, and some solutions that seem promising, if somewhat counterintuitive. Dr. Teevan is a Microsoft researcher, University of Washington Affiliate Professor, and the mother of 4 young boys. Today she talks about what she calls the productivity revolution, and explains how her research in micro-productivity – making use of short fragments of time to help us accomplish larger tasks - could help us be more productive, and experience a better quality of life at the same time.

Jaime Teevan

Chief Scientist