Microsoft Research Blog

English

  1. Knowledge Distillation in Automated Annotation: Supervised Text Classification with LLM-Generated Training Labels 

    June 1, 2024 | Nick Pangakis and Sam Wolken

    Computational social science (CSS) practitioners often rely on human-labeled data to fine-tune supervised text classifiers. We assess the potential for researchers to augment or replace human-generated training data with surrogate training labels from generative large language models (LLMs). We introduce a recommended workflow and test…

  2. Open X-Embodiment: Robotic Learning Datasets and RT-X Models 

    June 1, 2024 | Open X-Embodiment Collaboration, Abby O'Neill, Abdul Rehman, Abhinav Gupta, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, Albert Tung, Alex Bewley, Alex Herzog, Alex Irpan, Alexander Khazatsky, Anant Rai, Anchit Gupta, Andrew Wang, Andrey Kolobov, and Anikait Singh, Animesh Garg, Aniruddha Kembhavi, Annie Xie, Anthony Brohan, Antonin Raffin, Archit Sharma, Arefeh Yavary, Arhan Jain, Ashwin Balakrishna, Ayzaan Wahid, Ben Burgess-Limerick, Beomjoon Kim, Bernhard Schölkopf, Blake Wulfe, Brian Ichter, Cewu Lu, Charles Xu, Charlotte Le, Chelsea Finn, Chen Wang, Chenfeng Xu, Cheng Chi, Chenguang Huang, Christine Chan, Christopher Agia, Chuer Pan, Chuyuan Fu, Coline Devin, Danfei Xu, Daniel Morton, Danny Driess, Daphne Chen, Deepak Pathak, Dhruv Shah, Dieter Büchler, Dinesh Jayaraman, Dmitry Kalashnikov, Dorsa Sadigh, Edward Johns, Ethan Foster, Fangchen Liu, Federico Ceola, Fei Xia, Feiyu Zhao, Felipe Vieira Frujeri, Freek Stulp, Gaoyue Zhou, Gaurav S. Sukhatme, Gautam Salhotra, Ge Yan, Gilbert Feng, Giulio Schiavi, Glen Berseth, Gregory Kahn, Guangwen Yang, Guanzhi Wang, Hao Su, Hao-Shu Fang, Haochen Shi, Henghui Bao, Heni Ben Amor, Henrik I Christensen, Hiroki Furuta, Homanga Bharadhwaj, Homer Walke, Hongjie Fang, Huy Ha, Igor Mordatch, Ilija Radosavovic, Isabel Leal, Jacky Liang, Jad Abou-Chakra, Jaehyung Kim, Jaimyn Drake, Jan Peters, Jan Schneider, Jasmine Hsu, Jay Vakil, Jeannette Bohg, Jeffrey Bingham, Jeffrey Wu, Jensen Gao, Jiaheng Hu, Jiajun Wu, Jialin Wu, Jiankai Sun, Jianlan Luo, Jiayuan Gu, Jie Tan, Jihoon Oh, Jimmy Wu, Jingpei Lu, Jingyun Yang, Jitendra Malik, João Silvério, Joey Hejna, Jonathan Booher, Jonathan Tompson, Jonathan Yang, Jordi Salvador, Joseph J. Lim, Junhyek Han, Kaiyuan Wang, Kanishka Rao, Karl Pertsch, Karol Hausman, Keegan Go, Keerthana Gopalakrishnan, Ken Goldberg, Kendra Byrne, Kenneth Oslund, Kento Kawaharazuka, Kevin Black, Kevin Lin, Kevin Zhang, Kiana Ehsani, Kiran Lekkala, Kirsty Ellis, Krishan Rana, Krishnan Srinivasan, Kuan Fang, Kunal Pratap Singh, Kuo-Hao Zeng, Kyle Hatch, Kyle Hsu, Laurent Itti, Lawrence Yunliang Chen, Lerrel Pinto, Li Fei-Fei, Liam Tan, Linxi "Jim" Fan, Lionel Ott, Lisa Lee, Luca Weihs, Magnum Chen, Marion Lepert, Marius Memmel, Masayoshi Tomizuka, Masha Itkina, Mateo Guaman Castro, Max Spero, Maximilian Du, Michael Ahn, Michael C. Yip, Mingtong Zhang, Mingyu Ding, Minho Heo, Mohan Kumar Srirama, Mohit Sharma, Moo Jin Kim, Naoaki Kanazawa, Nicklas Hansen, Nicolas Heess, Nikhil J Joshi, Niko Suenderhauf, Ning Liu, Norman Di Palo, Nur Muhammad Mahi Shafiullah, Oier Mees, Oliver Kroemer, Osbert Bastani, Pannag R Sanketi, Patrick "Tree" Miller, Patrick Yin, Paul Wohlhart, Peng Xu, Peter David Fagan, Peter Mitrano, Pierre Sermanet, Pieter Abbeel, Priya Sundaresan, Qiuyu Chen, Quan Vuong, Rafael Rafailov, Ran Tian, Ria Doshi, Roberto Mart'in-Mart'in, Rohan Baijal, Rosario Scalise, Rose Hendrix, Roy Lin, Runjia Qian, Ruohan Zhang, Russell Mendonca, Rutav Shah, Ryan Hoque, Ryan Julian, Samuel Bustamante, Sean Kirmani, Sergey Levine, Shan Lin, Sherry Moore, Shikhar Bahl, Shivin Dass, Shubham Sonawani, Shubham Tulsiani, Shuran Song, Sichun Xu, Siddhant Haldar, Siddharth Karamcheti, Simeon Adebola, Simon Guist, Soroush Nasiriany, Stefan Schaal, Stefan Welker, Stephen Tian, Subramanian Ramamoorthy, Sudeep Dasari, Suneel Belkhale, Sungjae Park, Suraj Nair, Suvir Mirchandani, Takayuki Osa, Tanmay Gupta, Tatsuya Harada, Tatsuya Matsushima, Ted Xiao, Thomas Kollar, Tianhe Yu, Tianli Ding, Todor Davchev, Tony Z. Zhao, Travis Armstrong, Trevor Darrell, Trinity Chung, Vidhi Jain, Vikash Kumar, Vincent Vanhoucke, Wei Zhan, Wenxuan Zhou, Wolfram Burgard, Xi Chen, Xiangyu Chen, Xiaolong Wang, Xinghao Zhu, Xinyang Geng, Xiyuan Liu, Xu Liangwei, Xuanlin Li, Yansong Pang, Yao Lu, Yecheng Jason Ma, Yejin Kim, Yevgen Chebotar, Yifan Zhou, Yifeng Zhu, Yilin Wu, Ying Xu, Yixuan Wang, Yonatan Bisk, Yongqiang Dou, Yoonyoung Cho, Youngwoon Lee, Yuchen Cui, Yue Cao, Yueh-Hua Wu, Yujin Tang, Yuke Zhu, Yunchu Zhang, Yunfan Jiang, Yunshuang Li, Yunzhu Li, Yusuke Iwasawa, Yutaka Matsuo, Zehan Ma, Zhuo Xu, Zichen Jeff Cui, Zichen Zhang, Zipeng Fu, Zipeng Lin

    Large, high-capacity models trained on diverse datasets have shown remarkable successes on efficiently tackling downstream applications. In domains from NLP to Computer Vision, this has led to a consolidation of pretrained models, with general pretrained backbones serving as a starting point for many applications. Can…

  3. Riemannian coordinate descent algorithms on matrix manifolds 

    June 1, 2024 | Andi Han, Pratik Jawanpuria, and Bamdev Mishra

    Many machine learning applications are naturally formulated as optimization problems on Riemannian manifolds. The main idea behind Riemannian optimization is to maintain the feasibility of the variables while moving along a descent direction on the manifold. This results in updating all the variables at every…

  4. Table-GPT: Table Fine-tuned GPT for Diverse Table Tasks 

    June 1, 2024

    Language models, such as GPT-3 and ChatGPT, demonstrate remarkable abilities to follow diverse human instructions and perform a wide range of tasks, using instruction fine-tuning. However, when probing language models using a range of basic table-understanding tasks, we observe that today's language models are still…

  5. Diffy: Data-Driven Bug Finding for Configurations 

    June 1, 2024 | Siva Kesava Reddy Kakarla, Francis Y. Yan, and Ryan Beckett

    Configuration errors remain a major cause of system failures and service outages. One promising approach to identify configuration errors automatically is to learn common usage patterns (and anti-patterns) using data-driven methods. However, existing data-driven learning approaches analyze only simple configurations (e.g., those with no hierarchical…

  6. Designing Cloud Servers for Lower Carbon 

    June 1, 2024

    Major cloud providers intend to reduce carbon emissions by 2030, which requires effective interventions with short deployment timelines. We find that designing carbon-efficient compute server SKUs, or GreenSKUs, is a promising avenue as compute servers cause the majority of cloud emissions. However, designing GreenSKUs has…

  7. SmartOClock: Workload- and Risk-Aware Overclocking in the Cloud 

    June 1, 2024

    Operating server components beyond their voltage and power design limits (i.e., overclocking) enables improving performance and lowering cost for cloud workloads. However, overclocking can significantly degrade component lifetime, increase power consumption, and cause power capping events, eventually diminishing the performance benefits. In this paper, we…

  8. LST-Bench: Benchmarking Log-Structured Tables in the Cloud 

    June 1, 2024

    Data processing engines increasingly leverage distributed file systems for scalable, cost-effective storage. While the Apache Parquet columnar format has become a popular choice for data storage and retrieval, the immutability of Parquet files renders it impractical to meet the demands of frequent updates in contemporary…

  9. Sibyl: Forecasting Time-Evolving Query Workloads 

    June 1, 2024

    Database systems often rely on historical query traces to perform workload-based performance tuning. However, real production workloads are time-evolving, making historical queries ineffective for optimizing future workloads. To address this challenge, we propose Sibyl, an end-to-end machine learning-based framework that accurately forecasts a sequence of…

  10. Vertically Autoscaling Monolithic Applications with CaaSPER: Scalable Container-as-a-Service Performance Enhanced Resizing Algorithm for the Cloud 

    June 1, 2024

    Kubernetes has emerged as a prominent open-source platform for managing cloud applications, including stateful databases. These monolithic applications rely on vertical scaling, adjusting CPU cores based on load fluctuations. However, our analysis of Kubernetes-based Database-as-a-Service (DBaaS) offerings at Microsoft revealed that many customers consistently over-provision…

  11. Optimizing Distributed Protocols with Query Rewrites 

    June 1, 2024

    Distributed protocols such as 2PC and Paxos lie at the core of many systems in the cloud, but standard implementations do not scale. New scalable distributed protocols are developed through careful analysis and rewrites, but this process is ad hoc and error-prone. This paper presents…