Cluster Resource Management

Established: June 1, 2016

Publications

Overview

We are focused on building a scale-out, predictable, resource management substrate for big-data workloads.  To this end, we started with providing predictable allocation SLOs for jobs that have completion time requirements, and then focused on improving cluster efficiency. Using Apache Hadoop YARN as the base, we have built a scale-out fabric by composing the following projects:
1. Preemption (YARN-45): We added work-conserving preemption to YARN to improve cluster utilization.
2. Rayon (YARN-1051): We added a resource reservation layer to YARN scheduler to support predictable resource allocation. Rayon ships with YARN 2.6.
3. Mercury (YARN-2877): We enhanced the YARN scheduler to improve cluster utilization by minimizing scheduling latency. Mercury will ship with YARN 3.0.
4. Federation (YARN-2915): Building upon Mercury, we developed scale-out resource management substrate. The idea is to leverage a new “federation layer” to combine multiple YARN clusters into a single datacenter scale YARN cluster. This has allowed us to leverage stabilization work as well as improvements made to YARN by the community. Federation will ship with YARN 3.x.
5. Morpheus (YARN-5326): Many of the production jobs that have completion time deadlines are periodic. That is, the same job is periodically run on newly arriving data. Morpheus builds upon Rayon to provide predictable allocation for such jobs.
6. Medea (YARN-6592): We are working on enhancing the YARN scheduler to better support long-running services. This requires adding constraints to the scheduler such as affinity, anti-affinity, etc.

The stack we have built is being deployed at scale.

People