DEEGO: PPGNN
We study various aspects of our proposed model including, dependency on the number of eigencomponents utilized, latent polynomial filters learned, and performance of the individual polynomials on the node classification task. We further show that our model is scalable by evaluating over large graphs. Our model achieves performance gains of up to 10% over the state-of-the-art models and outperforms existing polynomial filter-based approaches in general.