We propose a new scheme for wireless video multicast based on compressed sensing. It has the property of graceful degradation and, unlike systems adhering to traditional separate coding, it does not suffer from a cliff effect. Compressed sensing is applied to generate measurements of equal importance from a video such that a receiver with a better channel will naturally have more information at hands to reconstruct the content without penalizing others. We experimentally compare different random matrices at the encoder side in terms of their performance for video transmission. We further investigate how properties of natural images can be exploited to improve the reconstruction performance by transmitting a small amount of side information. And we propose a way of exploiting inter-frame correlation by extending only the decoder. Finally we compare our results with a different scheme targeting the same problem with simulations and find competitive results for some channel configurations.