Abstract

The objective in extreme multi-label classification is to learn a classifier that can automatically tag a data point with the most relevant subset of labels from a large label set. Extreme multi-label classification is an important research problem since not only does it enable the tackling of applications with many labels but it also allows the reformulation of ranking problems with certain advantages over existing formulations.

Our objective, in this paper, is to develop an extreme multi-label classifier that is faster to train and more accurate at prediction than the state-of-the-art Multi-label Random Forest (MLRF) algorithm [2] and the Label Partitioning for Sub-linear Ranking (LPSR) algorithm [35]. MLRF and LPSR learn a hierarchy to deal with the large number of labels but optimize task independent measures, such as the Gini index or clustering error, in order to learn the hierarchy. Our proposed FastXML algorithm achieves significantly higher accuracies by directly optimizing an nDCG based ranking loss function. We also develop an alternating minimization algorithm for efficiently optimizing the proposed formulation. Experiments reveal that FastXML can be trained on problems with more than a million labels on a standard desktop in eight hours using a single core and in an hour using multiple cores.