Coalescence in Branching Trees and Branching Random Walks
- Krishna B. Athreya | Iowa State University
Consider a branching tree with one root at the origin. Assuming that at the n-th level there are at least two vertices. Pick two of them by simple random sampling without replacement. Now trace their lines back till they meet. Call that level Xn. In this talk we discuss the behavior of the distribution of Xn as n goes to infinity for the supercritical, critical, and subcritical Galton Watson branching trees. We also discuss the explosive case when the offspring mean is infinite and the offspring distribution is heavy tailed. We apply these results to study branching random walks. Some open problems will be described.
-
-
Jeff Running
-
Series: Microsoft Research Talks
-
Decoding the Human Brain – A Neurosurgeon’s Experience
- Dr. Pascal O. Zinn
-
-
-
-
-
-
Challenges in Evolving a Successful Database Product (SQL Server) to a Cloud Service (SQL Azure)
- Hanuma Kodavalla,
- Phil Bernstein
-
Improving text prediction accuracy using neurophysiology
- Sophia Mehdizadeh
-
Tongue-Gesture Recognition in Head-Mounted Displays
- Tan Gemicioglu
-
DIABLo: a Deep Individual-Agnostic Binaural Localizer
- Shoken Kaneko
-
-
-
-
Audio-based Toxic Language Detection
- Midia Yousefi
-
-
From SqueezeNet to SqueezeBERT: Developing Efficient Deep Neural Networks
- Forrest Iandola,
- Sujeeth Bharadwaj
-
Hope Speech and Help Speech: Surfacing Positivity Amidst Hate
- Ashique Khudabukhsh
-
-
-
Towards Mainstream Brain-Computer Interfaces (BCIs)
- Brendan Allison
-
-
-
-
Learning Structured Models for Safe Robot Control
- Subramanian Ramamoorthy
-