Inference and Learning with Random Maximum A-Posteriori Perturbations
- Tamir Hazan | Toyota Technological Institute at Chicago
Learning and inference in complex models drives much of the research in machine learning applications, from computer vision, natural language processing, to computational biology. The inference problem in such cases involves assessing the weights of possible structures, whether objects, parsers, or molecular structures. Although it is often feasible to only find the most likely or maximum a-posteriori (MAP) assignment rather than considering all possible assignment, MAP inference is limited when there are other likely assignments. In a fully probabilistic treatment, all possible alternative assignments are considered thus requiring summing over the assignments with their respective weights which is considerably harder (#P hard vs NP hard). The main surprising result of our work is that MAP inference (maximization) can be used to approximate and bound the weighted counting. This leads us to a new approximate inference framework that is based on MAP-statistics, thus does not depend on pseudo-probabilities, contrasting the current framework of Bethe approximations which lacks statistical meaning. This approach excels in regimes where there are several but not exponentially many prominent assignments. For example, this happens in cases where observations carry strong signals (local evidence) but are also guided by strong consistency constraints (couplings).
Speaker Details
Tamir Hazan received his PhD from the Hebrew University of Jerusalem (2009) and he is currently a research faculty at TTI Chicago. Tamir Hazan’s research describes efficient methods for reasoning about complex models. His work on random perturbations was presented in the machine learning best papers track at AAAI 2012. Tamir Hazan’s research also includes the primal-dual norm-product belief propagation algorithm which received a best paper award at UAI 2008. Currently, these dual decomposition techniques outperform the state-of-the-art in different computer vision tasks.
-
-
Jeff Running
-
Series: Microsoft Research Talks
-
Decoding the Human Brain – A Neurosurgeon’s Experience
- Dr. Pascal O. Zinn
-
-
-
-
-
-
Challenges in Evolving a Successful Database Product (SQL Server) to a Cloud Service (SQL Azure)
- Hanuma Kodavalla,
- Phil Bernstein
-
Improving text prediction accuracy using neurophysiology
- Sophia Mehdizadeh
-
Tongue-Gesture Recognition in Head-Mounted Displays
- Tan Gemicioglu
-
DIABLo: a Deep Individual-Agnostic Binaural Localizer
- Shoken Kaneko
-
-
-
-
Audio-based Toxic Language Detection
- Midia Yousefi
-
-
From SqueezeNet to SqueezeBERT: Developing Efficient Deep Neural Networks
- Forrest Iandola,
- Sujeeth Bharadwaj
-
Hope Speech and Help Speech: Surfacing Positivity Amidst Hate
- Ashique Khudabukhsh
-
-
-
Towards Mainstream Brain-Computer Interfaces (BCIs)
- Brendan Allison
-
-
-
-
Learning Structured Models for Safe Robot Control
- Subramanian Ramamoorthy
-