Pacific Northwest Probability Seminar: Gravitational Allocation to Uniform Points on the Sphere
- Yuval Peres | Microsoft
Given n uniform points on the surface of a two-dimensional sphere, how can we partition the sphere fairly among them? “Fairly” means that each region has the same area. It turns out that if the given points apply a two-dimensional gravity force to the rest of the sphere, then the basins of attraction for the resulting gradient flow yield such a partition – with exactly equal areas, no matter how the points are distributed. (See the cover of the AMS Notices at http://www.ams.org/publications/journals/notices/201705/rnoti-cvr1.pdf.) Our main result is that this partition minimizes, up to a bounded factor, the average distance between points in the same cell. I will also present an application to almost optimal matching of n uniform blue points to n uniform red points on the sphere, connecting to a classical result of Ajtai, Komlos, and Tusnady (Combinatorica 1984). Joint work with Nina Holden and Alex Zhai.
-
-
Yuval Peres
Principal Researcher
-
-
Watch Next
-
Fuzzy Extractors are Practical
- Melissa Chase,
- Amey Shukla
-
-
-
-
Microsoft Research India - The lab culture
- P. Anandan,
- Indrani Medhi Thies,
- B. Ashok
-
GenAI for Supply Chain Management: Present and Future
- Georg Glantschnig,
- Beibin Li,
- Konstantina Mellou
-
Using Optimization and LLMs to Enhance Cloud Supply Chain Operations
- Beibin Li,
- Konstantina Mellou,
- Ishai Menache
-
-
-