Self-Organizing Cellular Automata
- Alexander Holroyd | Microsoft Research
Cellular automata display an extraordinary range of behavior, ranging from very simple to apparently chaotic, with many cases in between. Perhaps the most interesting rules are those that yield multiple behavior types from different initial conditions – this is common even for one-dimensional rules started from finitely-supported seeds. If a rule yields chaos from some initial conditions, it is tempting to conclude by analogy with the second law of thermodynamics that chaos should be prevalent from almost all initial conditions. For a certain natural class of rules, we prove that the opposite holds: typical (i.e. random) initial seeds self-organize into predictable (but non-trivial) evolution, while exceptional seeds generate more complicated behavior, including apparent chaos. The key technique is application of percolation arguments to the highly non-independent setting of space-time configurations of cellular automata.
-
-
Alexander E. Holroyd
Senior Researcher
-
Jeff Running
-
Series: Microsoft Research Talks
-
Decoding the Human Brain – A Neurosurgeon’s Experience
- Dr. Pascal O. Zinn
-
-
-
-
-
-
Challenges in Evolving a Successful Database Product (SQL Server) to a Cloud Service (SQL Azure)
- Hanuma Kodavalla,
- Phil Bernstein
-
Improving text prediction accuracy using neurophysiology
- Sophia Mehdizadeh
-
Tongue-Gesture Recognition in Head-Mounted Displays
- Tan Gemicioglu
-
DIABLo: a Deep Individual-Agnostic Binaural Localizer
- Shoken Kaneko
-
-
-
-
Audio-based Toxic Language Detection
- Midia Yousefi
-
-
From SqueezeNet to SqueezeBERT: Developing Efficient Deep Neural Networks
- Forrest Iandola,
- Sujeeth Bharadwaj
-
Hope Speech and Help Speech: Surfacing Positivity Amidst Hate
- Ashique Khudabukhsh
-
-
-
Towards Mainstream Brain-Computer Interfaces (BCIs)
- Brendan Allison
-
-
-
-
Learning Structured Models for Safe Robot Control
- Subramanian Ramamoorthy
-