White Space Networking and Spectrum Sharing


July 18, 2014


Sumit Roy


University of Washington


The evolution of cognitive (secondary) networks to enable more efficient spectrum usage will rely on fast and accurate spectrum sensing/mapping, supported by a suitable architecture for data integration and model building. In the first part of the talk, fundamental aspects of the wide-area RF mapping problem as a grand challenge will be highlighted; and some recent work at UW that clarifies sub-system level trade-offs (between scan latency and channel status estimation accuracy, for example) will be described. Next, the evolution of a hybrid architecture – decentralized client-side sensing assisted database updating – is explored. Within this, model-based answers to fundamental questions such as “how much white space capacity is available” as a function of location for U.S. TV bands are developed. The talk will conclude with a description of current efforts for spectrum sharing (co-existence) just underway in the 3 GHz band (broadly) between different primaries (largely government operated communications such as military and non-military radars) and commercial networks (802.11 and 4G LTE).


Sumit Roy

Sumit Roy received the B. Tech. degree from the Indian Institute of Technology (Kanpur) in 1983, and the M. S. and Ph. D. degrees from the University of California (Santa Barbara), all in Electrical Engineering in 1985 and 1988 respectively, as well as an M. A. in Statistics and Applied Probability in 1988. His previous academic appointments were at the Moore School of Electrical Engineering, University of Pennsylvania, and at the University of Texas, San Antonio. He has been at UW since 1998, where he is presently Professor of Electrical Engineering. His research interests include analysis/design of wide range of next generation wireless communication systems/networks, inclusive of PAN/LAN/MAN, sensor, vehicular and RFID networks. He has served as Associate Editor for IEEE Trans. Commn. and Wireless Communications, undertaken lead roles in conference organization (Vice TPC Chair for WCNC2005) and was selected Fellow, IEEE for his contributions to cross-layer design of wireless networks and emerging wireless standards.