Place | Performance Rank | Team | Authors | Title |
1 | 1 | Amazon Web Services | Umut Isik, Ritwik Giri, Neerad Phansalkar, Jean-Marc Valin, Karim Helwani, Arvindh Krishnaswamy | Poconet: Better speech enhancement with frequency-positional embeddings, semi-supervised conversational data, and biased loss (opens in new tab) |
2 | 2 | Technische Universitat Braunschweig, Goodix Technology | Maximilian Strake, Bruno Defraene, Kristoff Fluyt, Wouter Tirry, Tim Fingscheidt | INTERSPEECH 2020 Deep Noise Suppression Challenge: A Fully Convolutional Recurrent Network (FCRN) for Joint Dereverberation and Denoising. (opens in new tab) |
2 | 2 | Northwestern Polytechnical University | Yanxin Hu , Yun Liu , Shubo Lv, Mengtao Xing, Shimin Zhang, Yihui Fu, Jian Wu, Bihong Zhang, Lei Xie | DCCRN: Deep complex convolution recurrent network for phase-aware speech enhancement (opens in new tab) |
The accepted papers for the real-time track are given below.
Place |
Performance Rank |
Team |
Authors |
Title |
1 |
1 |
Northwestern Polytechnical University |
Yanxin Hu , Yun Liu , Shubo Lv, Mengtao Xing, Shimin Zhang, Yihui Fu, Jian Wu, Bihong Zhang, Lei Xie |
|
2 |
2 |
Amazon Web Services |
Jean-Marc Valin, Umut Isik, Neerad Phansalkar, Ritwik Giri, Karim Helwani, Arvindh Krishnaswamy |
|
3 |
3 |
Technische Universitat Braunschweig, Goodix Technology |
Maximilian Strake, Bruno Defraene, Kristoff Fluyt, Wouter Tirry, Tim Fingscheidt |
|
4 |
4 |
Westlake University, Inria Grenoble Rhone-Alpes |
Xiaofei Li and Radu Horaud |
Online monaural speech enhancement using delayed subband lstm (opens in new tab) |
5 |
8 |
Carl von Ossietzky University |
Nils L. Westhausen and Bernd T. Meyer |
Dual-signal transformation lstm network for real-time noise suppression (opens in new tab) |
Organization | Team # | Complexity | Synthetic MOS | Synthetic dMOS | Real Recordings MOS | Real Recordings dMOS | Synthetic Reverb MOS | Synthetic Reverb dMOS | Overall MOS | Overall dMOS | 95% CI |
---|---|---|---|---|---|---|---|---|---|---|---|
Amazon | 9 | NRT | 4.07 | 0.74 | 3.52 | 0.55 | 3.33 | 0.55 | 3.61 | 0.60 | 0.02 |
Amazon | 9 | RT | 3.92 | 0.59 | 3.51 | 0.53 | 3.16 | 0.38 | 3.52 | 0.51 | 0.02 |
North Western Polytechnical University, China | 29 | RT | 4.01 | 0.69 | 3.48 | 0.51 | 3.10 | 0.32 | 3.52 | 0.51 | 0.02 |
Microsoft – 1 | NRT | 3.98 | 0.66 | 3.41 | 0.44 | 3.22 | 0.44 | 3.51 | 0.50 | 0.02 | |
North Western Polytechnical University, China | 29 | NRT | 3.98 | 0.66 | 3.40 | 0.43 | 3.15 | 0.37 | 3.48 | 0.47 | 0.02 |
TU Braunschweig and Goodix Technology | 17 | NRT | 3.85 | 0.52 | 3.39 | 0.41 | 3.23 | 0.46 | 3.46 | 0.45 | 0.02 |
Sony and CMU | 14 | NRT | 3.86 | 0.53 | 3.42 | 0.44 | 3.16 | 0.39 | 3.46 | 0.45 | 0.02 |
TU Braunschweig and Goodix Technology | 17 | RT | 3.86 | 0.54 | 3.39 | 0.42 | 3.21 | 0.43 | 3.46 | 0.45 | 0.02 |
Institute of Acoustics, Chinese Academy of Science | 30 | NRT | 3.81 | 0.48 | 3.33 | 0.36 | 3.02 | 0.24 | 3.37 | 0.36 | 0.02 |
Supertone/Seoul National University | 20 | NRT | 3.75 | 0.43 | 3.28 | 0.31 | 3.12 | 0.34 | 3.36 | 0.35 | 0.02 |
Microsoft-2 | RT | 3.76 | 0.44 | 3.26 | 0.29 | 3.08 | 0.30 | 3.34 | 0.33 | 0.02 | |
Westlake University, INRIA Grenoble Rhone-Alpes | 37 | RT | 3.67 | 0.35 | 3.30 | 0.33 | 3.02 | 0.24 | 3.32 | 0.31 | 0.02 |
CASIA and John Hopkins | 15 | NRT | 3.73 | 0.41 | 3.30 | 0.33 | 2.94 | 0.16 | 3.32 | 0.31 | 0.02 |
Institute of Automation, Chinese Academy of Science | 6 | NRT | 3.68 | 0.36 | 3.31 | 0.34 | 2.90 | 0.12 | 3.30 | 0.29 | 0.02 |
CASIA and John Hopkins | 15 | RT | 3.63 | 0.31 | 3.25 | 0.27 | 2.94 | 0.16 | 3.27 | 0.25 | 0.02 |
Shandong University of Technology | 18 | RT | 3.68 | 0.36 | 3.33 | 0.36 | 2.65 | -0.12 | 3.25 | 0.24 | 0.02 |
Supertone/Seoul National University | 20 | RT | 3.60 | 0.27 | 3.19 | 0.22 | 2.98 | 0.20 | 3.24 | 0.23 | 0.02 |
Carl Von Ossietzky University Oldenburg | 22 | RT | 3.58 | 0.25 | 3.21 | 0.24 | 2.95 | 0.17 | 3.24 | 0.23 | 0.02 |
Sayint.ai | 25 | NRT | 3.74 | 0.42 | 3.25 | 0.27 | 2.62 | -0.16 | 3.21 | 0.20 | 0.02 |
Academia Sinica | 5 | NRT | 3.63 | 0.30 | 3.18 | 0.21 | 2.83 | 0.06 | 3.21 | 0.19 | 0.02 |
Facebook AI, INRIA | 41 | NRT | 3.67 | 0.34 | 3.19 | 0.21 | 2.78 | 0.00 | 3.20 | 0.19 | 0.02 |
Friedrich-Alexander-Universitat Erlangen-Nurnberg | 40 | RT | 3.54 | 0.21 | 3.18 | 0.20 | 2.92 | 0.14 | 3.20 | 0.19 | 0.02 |
Institute of Acoustics, Chinese Academy of Science | 30 | RT | 3.50 | 0.17 | 3.10 | 0.13 | 2.90 | 0.12 | 3.15 | 0.14 | 0.02 |
Institute of Acoustics, Chinese Academy of Science | 30 | RT | 3.50 | 0.17 | 3.10 | 0.13 | 2.90 | 0.12 | 3.15 | 0.14 | 0.02 |
Facebook AI, INRIA | 41 | RT | 3.61 | 0.28 | 3.08 | 0.10 | 2.70 | -0.07 | 3.12 | 0.11 | 0.02 |
Citicbank credic card center | 36 | RT | 3.46 | 0.14 | 3.04 | 0.07 | 2.70 | -0.07 | 3.06 | 0.05 | 0.02 |
Baseline-NSNet | RT | 3.49 | 0.17 | 3.00 | 0.03 | 2.64 | -0.14 | 3.03 | 0.02 | 0.02 | |
Noisy Blind test set | 3.32 | 0 | 2.97 | 0 | 2.78 | 0 | 3.01 | 0 | 0.02 |
Organization | Team # | Complexity | Synthetic MOS | Synthetic dMOS | Real Recordings MOS | Real Recordings dMOS | Synthetic Reverb MOS | Synthetic Reverb dMOS | Overall MOS | Overall dMOS | 95% CI |
---|---|---|---|---|---|---|---|---|---|---|---|
Amazon | 9 | NRT | 4.07 | 0.94 | 3.40 | 0.57 | 3.19 | 0.54 | 3.52 | 0.67 | 0.01 |
North Western Polytechnical University, China | 29 | RT | 4.00 | 0.87 | 3.37 | 0.54 | 2.94 | 0.30 | 3.42 | 0.57 | 0.01 |
Amazon | 9 | RT | 3.87 | 0.74 | 3.38 | 0.55 | 2.97 | 0.32 | 3.39 | 0.54 | 0.01 |
TU Braunschweig and Goodix Technology | 17 | NRT | 3.83 | 0.70 | 3.28 | 0.45 | 3.15 | 0.51 | 3.38 | 0.53 | 0.01 |
North Western Polytechnical University, China | 29 | NRT | 3.90 | 0.77 | 3.34 | 0.52 | 2.96 | 0.31 | 3.38 | 0.53 | 0.01 |
TU Braunschweig and Goodix Technology | 17 | RT | 3.83 | 0.69 | 3.27 | 0.44 | 3.11 | 0.47 | 3.36 | 0.52 | 0.01 |
Sony and CMU | 14 | NRT | 3.76 | 0.63 | 3.32 | 0.49 | 2.98 | 0.33 | 3.34 | 0.49 | 0.01 |
Blind test set | 3.13 | 0 | 2.83 | 0 | 2.64 | 0 | 2.85 | 0 | 0.01 |