Portrait of Neil Dalchau

Neil Dalchau



I am a Scientist in the Biological Computation research group (part of Computational Science Laboratory) at Microsoft Research, Cambridge. I also hold an Honorary Senior Research Associate position at the Department of Chemistry, UCL.

My overall research interests are in how biological systems process information, perform computations, and make life-preserving decisions. The immune system is a great example of biological information processing, that operates at multiple temporal and spatial scales; without it, we’d struggle to survive again the many opportunistic pathogens that we encounter on a daily basis.

In addition to taking inspiration from understanding complex natural systems, I’m interested in engineering complex systems, using the building blocks of nature. Our project on Synthetic Biology seeks to understand how we can utilise the machinery of cells to perform new functions. Endowing cells with additional functions and refining their mechanisms enables us to enhance production of biofuels and medicine.

In all of our research areas, we are developing software tools to enable other researchers to understand or create biological function.


Open Solving Library for ODEs

Established: July 15, 2014

OSLO is a .NET and Silverlight class library for the numerical solution of ordinary differential equations (ODEs). The library enables numerical integration to be performed in C#, F# and Silverlight applications. OSLO implements Runge-Kutta and back differentiation formulae (BDF) for…

Programming DNA Circuits

Established: February 7, 2009

Molecular devices made of nucleic acids show great potential for applications ranging from bio-sensing to intelligent nanomedicine. They allow computation to be performed at the molecular scale, while also interfacing directly with the molecular components of living systems. They form…

Genetic Engineering of Living Cells

Established: February 7, 2009

Synthetic biology aims at producing novel biological systems to carry out some desired and well-defined functions. An ultimate dream is to design these systems at a high level of abstraction using engineering-based tools and programming languages, press a button, and…





Ten simple rules for effective computational research
James Osborne, Miguel Bernabeu, Maria Bruna, Ben Calderhead, Jonathan Cooper, Neil Dalchau, Sara-Jane Dunn, Alexander Fletcher, Derek Groen, Bernhard Knapp, Gary Mirams, Joe Pitt-Francis, Biswa Sengupta, David Wright, Christian Yates, David Gavaghan, Stephen Emmott, Charlotte Deane, in PLoS Computational Biology, PLoS Computational Biology (Public Library of Science Computational Biology),, March 1, 2014, View abstract, Download PDF










I started life as a mathematician, studying Mathematics at the University of Oxford, UK (2001-2005). I then went to the University of Cambridge to do a Ph.D, the project being a collaboration between Alex Webb‘s group at the Department of Plant Sciences and Jorge Goncalves in the Control Group at the Department of Engineering.

Following my PhD, I briefly held a research associate position in the Control Group, working with Glenn Vinnicombe on applications of stochastic control theory to gene networks.

I came to Microsoft Research as a postdoc in 2009, during which I worked with Andrew Phillips on modelling immune systems and synthetic gene networks. I became a permanent member of the Biological Computation group in 2012.