LiST (Lite Self-Training)
We present a new method LiST for efficient fine-tuning of large pre-trained language models (PLMs) in few-shot learning settings. LiST significantly improves over recent methods that adopt prompt fine-tuning using two key techniques. The first one is the use of self-training to leverage large amounts of unlabeled data for prompt-tuning to significantly boost the model performance in few-shot settings. We use self-training in conjunction with meta-learning for re-weighting noisy pseudo-prompt labels.