Roadmap to fault tolerant quantum computation using topological qubit arrays
- David Aasen ,
- Morteza Aghaee ,
- Zulfi Alam ,
- Mariusz Andrzejczuk ,
- Andrey Antipov ,
- M. Astafev ,
- Lukas Avilovas ,
- Amin Barzegar ,
- Bela Bauer ,
- Jonathan Becker ,
- J. M. Bello-Rivas ,
- Umesh Bhaskar ,
- Alex Bocharov ,
- S. Boddapati ,
- David Bohn ,
- Jouri Bommer ,
- Parsa Bonderson ,
- Jan Borovsky ,
- L. Bourdet ,
- Samuel Boutin ,
- Tom Brown ,
- Gary Campbell ,
- Lucas Casparis ,
- Srivatsa Chakravarthi ,
- Rui Chao ,
- Benjamin J. Chapman ,
- Sohail Chatoor ,
- Anna Wulff Christensen ,
- Patrick Codd ,
- William Cole ,
- Paul Cooper ,
- Fabiano Corsetti ,
- Ajuan Cui ,
- Wim van Dam ,
- Tareq El Dandachi ,
- Sahar Daraeizadeh ,
- Adrian C Dumitrascu ,
- Andreas Ekefjard ,
- Saeed Fallahi ,
- L. Galletti ,
- Geoff Gardner ,
- Raghu Gatta ,
- Haris Gavranovic ,
- Michael Goulding ,
- D. Govender ,
- Flavio Griggio ,
- Ruben Grigoryan ,
- Sebastian Grijalva ,
- Sergei Gronin ,
- Jan Gukelberger ,
- Jeongwan Haah ,
- Marzie Hamdast ,
- Esben Bork Hansen ,
- Matthew Hastings ,
- Sebastian Heedt ,
- Samantha Ho ,
- Justin Hogaboam ,
- Laurens Holgaard ,
- Kevin Van Hoogdalem ,
- Jinnapat Indrapiromkul ,
- Henrik Ingerslev ,
- Lovro Ivancevic ,
- Sarah Jablonski ,
- Thomas Jensen ,
- Jaspreet Jhoja ,
- Jeffrey Jones ,
- Kostya Kalashnikov ,
- Ray Kallaher ,
- Rachpon Kalra ,
- Farhad Karimi ,
- Torsten Karzig ,
- S. Kimes ,
- Vadym Kliuchnikov ,
- Maren Elisabeth Kloster ,
- Christina Knapp ,
- Derek Knee ,
- Jonne Koski ,
- P. Kostamo ,
- Jamie R. Kuesel ,
- Brad Lackey ,
- Tom Laeven ,
- Jeffrey Lai ,
- Gijs de Lange ,
- Thorvald Larsen ,
- Jason Lee ,
- Kyunghoon Lee ,
- Grant Leum ,
- Kongyi Li ,
- Tyler Lindemann ,
- Marijn Lucas ,
- Roman Lutchyn ,
- Morten Hannibal Madsen ,
- Nash Madulid ,
- Michael Manfra ,
- Signe Brynold Markussen ,
- Esteban Martinez ,
- Marco Mattila ,
- Jake Mattinson ,
- Robert McNeil ,
- Antonio Rodolph Mei ,
- R. Mishmash ,
- Gopakumar Mohandas ,
- Christian Mollgaard ,
- Michiel de Moor ,
- Trevor Morgan ,
- George Moussa ,
- Anirudh Narla ,
- Chetan Nayak (cnayak) ,
- Jens Hedegaard Nielsen ,
- William Hvidtfelt Padkaer Nielsen ,
- Fr'ed'eric Nolet ,
- Mike Nystrom ,
- Eoin O'Farrell ,
- K. Otani ,
- Adam Paetznick ,
- Camille Papon ,
- Andres Paz ,
- Karl Petersson ,
- Luca Petit ,
- Dima Pikulin ,
- Diego Olivier Fernandez Pons ,
- Sam Quinn ,
- Mohana Rajpalke ,
- Alejandro Alcaraz Ramirez ,
- Katrine Rasmussen ,
- David Razmadze ,
- Ben Reichardt ,
- Yuan Ren ,
- Ken Reneris ,
- Roy Riccomini ,
- Ivan Sadovskyy ,
- Lauri Sainiemi ,
- Juan Carlos Estrada Saldana ,
- Irene Sanlorenzo ,
- Simon Schaal ,
- Emma Schmidgall ,
- Cristina Sfiligoj ,
- Marcus P. da Silva ,
- Sarat Sinha ,
- Mathias Soeken ,
- Patrick Sohr ,
- Tomas Stankevic ,
- Lieuwe Stek ,
- Patrick Strom-Hansen ,
- Eric Stuppard ,
- Aarthi Sundaram ,
- H. Suominen ,
- Judith Suter ,
- Satoshi Suzuki ,
- Krysta Svore ,
- Sam Teicher ,
- Nivetha Thiyagarajah ,
- Raj Tholapi ,
- Mason Thomas ,
- Dennis Tom ,
- Emily Toomey ,
- Josh Tracy ,
- Matthias Troyer ,
- Michelle Turley ,
- Matthew D. Turner ,
- Shivendra Upadhyay ,
- Ivan Urban ,
- Alexander Vaschillo ,
- Dmitrii Viazmitinov ,
- Dominik Vogel ,
- Zhenghan Wang ,
- John Watson ,
- Alex Webster ,
- Joseph Weston ,
- Timothy Williamson ,
- G. Winkler ,
- David J. van Woerkom ,
- Brian Paquelet Wutz ,
- Chung Kai Yang ,
- Richard Yu ,
- Emrah Yucelen ,
- Jes'us Herranz Zamorano ,
- Roland Zeisel ,
- Guoji Zheng ,
- Justin Zilke ,
- Andrew Zimmerman
We describe a concrete device roadmap towards a fault-tolerant quantum computing architecture based on noise-resilient, topologically protected Majorana-based qubits. Our roadmap encompasses four generations of devices: a single-qubit device that enables a measurement-based qubit benchmarking protocol; a two-qubit device that uses measurement-based braiding to perform single-qubit Clifford operations; an eight-qubit device that can be used to show an improvement of a two-qubit operation when performed on logical qubits rather than directly on physical qubits; and a topological qubit array supporting lattice surgery demonstrations on two logical qubits. Devices that enable this path require a superconductor-semiconductor heterostructure that supports a topological phase, quantum dots and coupling between those quantum dots that can create the appropriate loops for interferometric measurements, and a microwave readout system that can perform fast, low-error single-shot measurements. We describe the key design components of these qubit devices, along with the associated protocols for demonstrations of single-qubit benchmarking, Clifford gate execution, quantum error detection, and quantum error correction, which differ greatly from those in more conventional qubits. Finally, we comment on implications and advantages of this architecture for utility-scale quantum computation.