SALAD-VAE: Semantic Audio Compression with Language-Audio Distillation
Modern generative and multimodal models increasingly rely on compact latent representations that trade and balance semantic richness with high-fidelity reconstruction. We introduce SALAD-VAE, a continuous and highly compact semantic Audio Variational Autoencoder, which operates in the frequency domain and achieves state-of-the-art compression with very low latent frame rate (7.8 Hz) while surfacing semantic structure and producing high audio quality. We enhance the standard VAE semantic losses and augmentation, specifically contrastive learning and CLAP-based embedding distillation, enabling it to generalize across diverse audio domains. With a significantly less computational complex architecture than comparable state-of-the-art VAEs, SALAD-VAE shows comparably high reconstruction quality while it consistently outperforms them on a wide range of classification benchmarks. Furthermore, the proposed additional loss function provides a trained CLAP projection layer, which can be used zero-shot audio captioning and classification matching pretrained CLAP audio-text embeddings.
Demo page: https://sebraun-msr.github.io/SALAD-VAE/ (opens in new tab)