Microsoft Research Blog

Jigsaw fixes bugs in machine-written software 

March 31, 2022
Large pre-trained language models such as GPT-3, Codex, and others can be tuned to generate code from natural language specifications of programmer intent. Such automated models have the potential to improve productivity for every programmer in the world. But since the models can struggle to…

Recent Posts

  1. A flowchart showing inputs pre-processed before being fed into large language models including GPT-3, Codex, and others. The post-process output is returned to the end-user for verification. If they find the output incorrect, it is edited by them, and the learning is fed back into the pre-process and post-process mechanisms to improve them further.

    Jigsaw fixes bugs in machine-written software 

    March 31, 2022

    Large pre-trained language models such as GPT-3, Codex, and others can be tuned to generate code from natural language specifications of programmer intent. Such automated models have the potential to improve productivity for every programmer in the world. But since the models can struggle to…

  2. Figure 1: COMPASS is a general-purpose pretraining pipeline, which is trained on mulitmodal data, including RGB image, segmentation, depth and optical flow. The pretrained COMPASS model can be deployed to various downstream tasks of autonomous systems. In this work, we transfer COMPASS to drone navigation, car racing and visual odometry, which are deployed in very different environments and application scenarios.

    COMPASS: COntrastive Multimodal Pretraining for AutonomouS Systems 

    February 23, 2022

    Humans have the fundamental cognitive ability to perceive the environment through multimodal sensory signals and utilize this to accomplish a wide variety of tasks. It is crucial that an autonomous agent can similarly perceive the underlying state of an environment from different sensors and appropriately…

  3. An illustration of the KEAR architecture represented by five panels side by side. The first contains an input question—“What is a treat that your dog will enjoy?”—and the answer choices “salad,” “petted,” “affection,” “bone,” and “lots of attention.” The second panel has three boxes, each representing retrieval from a specific knowledge source. A box labeled “Knowledge Graph” has a silhouette of a dog and underneath it and labeled “desires” a silhouette of a dog being petted; a heart representing “affection”; a bone; and clapping hands representing “lots of attention.” A box labeled “relevant questions” has the question “What do dogs like to eat?” and the accompanying answer “Bones.” A boxed labeled “dictionary” contains the definition of “bone”: “a composite material making up the skeleton of most vertebrates.” The third panel, labeled “concatenation with input,” contains the input question followed by “Dog, desires, bone. Dog, desires, lots of attention” followed by the relevant question and finally the dictionary definition of bone. In between each is a separation token [SEP]. The fourth panel is labeled “language model” and contains a quote box labeled “language services,” a cube labeled “model,” and left and right braces punctuation within a circle labeled “language understanding.” The fifth panel is labeled “output” and includes silhouettes of each of the five answer choices. The silhouette of the bone is highlighted in blue, representing the appropriate response.

    Azure AI milestone: Microsoft KEAR surpasses human performance on CommonsenseQA benchmark 

    December 20, 2021

    KEAR (Knowledgeable External Attention for commonsense Reasoning)—along with recent milestones in computer vision and neural text-to-speech—is part of a larger Azure AI (opens in new tab) mission to provide relevant, meaningful AI solutions and services that work better for people because they better capture how people learn and work—with…

Explore More

  • Events & conferences

    Events & conferences 

    Meet our community of researchers, learn about exciting research topics, and grow your network

  • Podcasts

    Podcasts 

    Ongoing conversations at the cutting edge of research

  • Microsoft Research Forum

    Microsoft Research Forum 

    Join us for a continuous exchange of ideas about research in the era of general AI